Как стать автором
Обновить

Российские физики представили метод классификации фото на основе квантовой свёрточной нейронной сети

Машинное обучение *Научно-популярное Искусственный интеллект
image
Источник: Пресс-служба МИСИС

Российские физики из НИТУ МИСИС, Российского квантового центра и МГУ впервые в мире представили метод классификации фотографий с высокой точностью для 4-х классов изображений, основанный на архитектуре квантовой свёрточной нейронной сети. Для этого учёные улучшили структуру квантовой схемы и модель квантового персептрона — модель восприятия информации мозгом, которая необходима для процесса обучения нейронной сети. Статья об исследовании в области квантового машинного обучения опубликована в журнале Frontiers in Physics.

В последнее время нейронные сети активно применяются для решения широкого круга вычислительных задач. На данном этапе мощность классических компьютеров перестаёт расти — это значит, что для развития машинного обучения необходим новый подход к обучению нейросетей.
Читать дальше →
Всего голосов 7: ↑5 и ↓2 +3
Просмотры 4.8K
Комментарии 8

Совсем не нейронные сети

Блог компании Recognitor Обработка изображений *Машинное обучение *


Недавно ZlodeiBaal писал о достижениях в сверточных нейронных сетях (CNN) (и, кстати, тут же успешно настроил и обучил сеть для поиска области автомобильного номера).
А я хочу рассказать про принципиально иную и, наверное, более сложную модель, которую сейчас развивает Алексей Редозубов (@AlexeyR), и про то, как мы, конечно проигнорировав некоторые важные элементы, и ее применили для распознавания автомобильных регистрационных знаков!

В статье несколько упрощенно напомню о некоторых моментах этой концепции и покажу, как оно сработало в нашей задаче.
Читать дальше →
Всего голосов 66: ↑61 и ↓5 +56
Просмотры 49K
Комментарии 104

Деконструкция мифа о глубоком обучении. Лекция в Яндексе

Блог компании Яндекс Алгоритмы *Математика *Машинное обучение *
Оптимизм по поводу нейронных сетей разделяют не все — или, по крайней мере, уровень такого оптимизма бывает разным. Старший преподаватель факультета компьютерных наук ВШЭ Сергей Бартунов согласен, что нейросетевая область сейчас на подъеме. С другой стороны, он хочет внести в происходящее некоторую ясность, определить реальный потенциал нейросетей. Вне зависимости от точки зрения докладчика, глубокое обучение и правда не проникает в нашу сферу совсем уж стремительными темпами. Традиционные методы обучения всё ещё работают и не обязательно будут вытеснены машинным интеллектом в ближайшей будущем.


Под катом — расшифровка лекции и часть слайдов Сергея.

Всего голосов 97: ↑88 и ↓9 +79
Просмотры 38K
Комментарии 46

Яндекс использовал нейросеть и научился прогнозировать осадки с точностью до минут

Блог компании Яндекс Алгоритмы *Математика *Машинное обучение *
Сегодня я вновь хотел бы поговорить с вами о погоде. Вновь — потому что почти год назад мы уже о ней разговаривали: я рассказал про нашу технологию построения прогнозов Метеум, основанную на метеомоделировании и машинном обучении. Теперь я хочу поговорить не о той погоде, которая будет завтра, на следующей неделе или в новогоднюю ночь, — а о той, которая уже установилась за окном, и о той, которая наступит в ближайшие несколько часов.



Под катом я расскажу о том, что такое наукастинг и как мы над ним работали.
Читать дальше →
Всего голосов 121: ↑115 и ↓6 +109
Просмотры 58K
Комментарии 92

Как мы делали краткосрочный прогноз осадков. Лекция в Яндексе

Блог компании Яндекс Алгоритмы *Математика *Машинное обучение *
В начале зимы Яндекс.Погода научилась показывать, будут ли осадки в ближайшие два часа. Спустя пару месяцев тема метеопрогнозирования стала центральной на одном из мероприятий Data & Science. Среди докладчиков в тот день был Алексей Преображенский — разработчик из команды Яндекс.Погоды. Алексей рассказал о нашем алгоритме наукастинга и сверточной нейросети, лежащей в основе этого алгоритма.


Под катом — расшифровка лекции и слайды.

Всего голосов 47: ↑45 и ↓2 +43
Просмотры 14K
Комментарии 12

Нейронные сети в детектировании номеров

Блог компании Recognitor Алгоритмы *Обработка изображений *Машинное обучение *


Распознавание автомобильных номеров до сих пор является самым продаваемым решением на основе компьютерного зрения. Сотни, если не тысячи продуктов конкурируют на этом рынке уже на протяжении 20-25 лет. Отчасти поэтому сверточные нейронные сети (CNN) не бьют прежние алгоритмические подходы на рынке.

Но опыт последних лет говорит, что алгоритмы CNN позволяют делать надежные и гибкие для применения решения. Есть и еще одно удобство: при таком подходе всегда можно улучшить надежность решения на порядок после реального внедрения за счет переобучения. Кроме того, такие алгоритмы отлично реализуются на GPU (графических модулях), которые значительно эффективней с точки зрения потребления электроэнергии, чем обычные процессоры. А платформа Jetson TX от NVidia так просто потребляет очень мало по меркам современных вычислителей. Наглядное «энергетическое превосходство»:
Читать дальше →
Всего голосов 67: ↑67 и ↓0 +67
Просмотры 46K
Комментарии 30

Открытая трансляция из главного зала SmartData 2017: речь не про решения — речь про эволюцию

Блог компании JUG Ru Group Big Data *Машинное обучение *Hadoop *


Как мы уже неоднократно сообщали ранее, в этом году компания JUG.ru Group решила заглянуть в будущее и разобраться, какая необходимость двум серым ящикам взаимодействовать друг с другом впустить в наш мир дозу сакральных знаний по Big Data и машинному обучению — мы сделали конференцию SmartData 2017, которая пройдёт в Питере 21 октября.

Зачем мы собираем конференцию по Big Data и машинному обучению? Потому что не можем не собрать. И чтобы обратить в наше братство как можно большее количество разработчиков, мы традиционно открываем бесплатную онлайн-трансляцию из первого зала конференции.

Итак, бесплатная онлайн-трансляция из главного зала SmartData 2017 начнётся 21 октября 2017 года в 9:30 утра по московскому времени. Только вы, мы и будущее. В этот раз трансляция будет доступна в 2k — доставайте ваши 4k мониторы!



Ссылка на онлайн-трансляцию первого трека конференции SmartData 2017 и краткое описание докладов — под катом.
Читать дальше →
Всего голосов 24: ↑23 и ↓1 +22
Просмотры 6.6K
Комментарии 0

Сверточная сеть на python. Часть 1. Определение основных параметров модели

Блог компании Open Data Science Алгоритмы *Обработка изображений *Математика *Машинное обучение *

Несмотря на то, что можно найти не одну статью, объясняющую принцип метода обратного распространения ошибки в сверточных сетях (раз, два, три и даже дающих “интуитивное” понимание — четыре), мне, тем не менее, никак не удавалось полностью понять эту тему. Кажется, что авторы недостаточно внимания уделяют обычным примерам либо же опускают какие-то хорошо понятные им, но не очевидные другим особенности, и весь материал по этой причине становится неподъемным. Мне хотелось разложить все по полочкам для самого себя и в итоге конспекты вылились в статью. Я постарался исключить все недостатки существующих объяснений и надеюсь, что эта статья ни у кого не вызовет вопросов или недопониманий. И, может, следующий новичок, который, также как и я, захочет во всем разобраться, потратит уже меньше времени.
Читать дальше →
Всего голосов 16: ↑15 и ↓1 +14
Просмотры 64K
Комментарии 10

Сверточная сеть на python. Часть 2. Вывод формул для обучения модели

Блог компании Open Data Science Алгоритмы *Обработка изображений *Математика *Машинное обучение *

В прошлой статье мы рассмотрели концептуально все слои и функции, из которых будет состоять будущая модель. Сегодня мы выведем формулы, которые будут отвечать за обучение этой модели. Слои будем разбирать в обратном порядке — начиная с функции потерь и заканчивая сверточным слоем. Если возникнут трудности с пониманием формул, рекомендую ознакомиться с подробным объяснением (на картинках) метода обратного распространения ошибки, и также вспомнить о правиле дифференцирования сложной функции.
Читать дальше →
Всего голосов 67: ↑66 и ↓1 +65
Просмотры 28K
Комментарии 0

Сверточная сеть на python. Часть 3. Применение модели

Блог компании Open Data Science Алгоритмы *Обработка изображений *Математика *Машинное обучение *

Это заключительная часть статей о сверточных сетях. Перед прочтением рекомендую ознакомиться с первой и второй частями, в которых рассматриваются слои сети и принципы их работы, а также формулы, которые отвечают за обучение всей модели. Сегодня мы рассмотрим особенности и трудности, с которыми можно столкнуться при тестировании вручную написанной на python сверточной сети, применим написанную сеть к датасету MNIST и сравним полученные результаты с библиотекой pytorch.
Читать дальше →
Всего голосов 62: ↑61 и ↓1 +60
Просмотры 31K
Комментарии 8

Статья о том, как мы попробовали применить современные нейросетевые технологии, чтобы находить каски на головах людей

Блог компании Macroscop Поисковые технологии *Работа с видео *Программирование *


Раньше все свои интеллектуальные модули мы строили на традиционных алгоритмах видеоанализа (далее мы будем называть их «классическими»). О нейросетях мы, конечно, знали, и пробовали их применять еще в далеком 2008. В частности, сравнивать изображения людей по кластерам. Но результаты не были выдающимися (в том числе из-за невысокого уровня развития нейросетей). И мы на многие годы стали приверженцами «классики» машинного зрения. А все нейросети были у нас в головах :)
Читать дальше →
Всего голосов 36: ↑31 и ↓5 +26
Просмотры 9.8K
Комментарии 8

Еще одна статья о распознавании рабочих без касок нейросетями

Работа с видео *Машинное обучение *
Из песочницы

Привет, Хабр! Меня зовут Владимир, я студент 4го курса КубГТУ (к сожалению).


Некоторое время назад я наткнулся на статью о разработке CV-системы для обнаружения рабочего персонала без касок, и решил поделиться собственным опытом в данной области, полученным в ходе стажировки в одной промышленной компании летом 2017 года. Теория и практика OpenCV и TensorFlow в контексте задачи обнаружения людей и касок — сразу под катом.



КДПВ, снятая в реальном времени с камеры видеонаблюдения

Читать дальше →
Всего голосов 21: ↑21 и ↓0 +21
Просмотры 29K
Комментарии 28

Улучшение качества изображения с помощью нейронной сети

Алгоритмы *Обработка изображений *Машинное обучение *Читальный зал
Сегодня, хочу рассказать об интересном подходе по улучшению качества изображения. Официальное название подхода Super Resolution. Улучшение качества изображения программными методами известно с начала появления цифровых снимков, но в последние 3 года произошёл качественный скачок, вызванный использованием нейронных сетей.


Пример улучшения качества изображения с использованием технологии Super Resolution.
Читать дальше →
Всего голосов 34: ↑31 и ↓3 +28
Просмотры 60K
Комментарии 27

Битва титанов наших дней: спор В. Вапника и Л. Джейкела о будущем SVM и нейронных сетей

Блог компании Центр речевых технологий (ЦРТ) Машинное обучение *Исследования и прогнозы в IT *

Воспоминания о том, как спорили Нильс Бор с Альбертом Эйнштейном, а Джордж Вестингауз и Никола Тесла с Томасом Эдисоном, давно превратились в легенды. Эти научные дискуссии не забыты до сих, потому что, с одной стороны, разрешить их смогло только время. С другой стороны, их исход определил развитие технологий на десятилетия вперед. Существуют ли подобные дискуссии в наши дни? Существуют. И они столь же горячи и интересны, как и сто лет назад.


Пожалуй, самым интересным спором современности является спор Владимира Вапника (изобретателя метода опорных векторов или SVM — support vector machine), с Ларри Джейкелом, его боссом в компании “Bell Labs” и сторонником сверточных нейронных сетей.

Читать дальше →
Всего голосов 12: ↑10 и ↓2 +8
Просмотры 3.5K
Комментарии 0

Анализ тональности текстов с помощью сверточных нейронных сетей

Блог компании VK Python *Data Mining *Big Data *Машинное обучение *
Туториал


Представьте, что у вас есть абзац текста. Можно ли понять, какую эмоцию несет этот текст: радость, грусть, гнев? Можно. Упростим себе задачу и будем классифицировать эмоцию как позитивную или как негативную, без уточнений. Есть много способов решать такую задачу, и один из них — свёрточные нейронные сети (Convolutional Neural Networks). CNN изначально были разработаны для обработки изображений, однако они успешно справляются с решением задач в сфере автоматической обработки текстов. Я познакомлю вас с бинарным анализом тональности русскоязычных текстов с помощью свёрточной нейронной сети, для которой векторные представления слов были сформированы на основе обученной Word2Vec модели.

Статья носит обзорный характер, я сделал акцент на практическую составляющую. И сразу хочу предупредить, что принимаемые на каждом этапе решения могут быть неоптимальными. Перед прочтением рекомендую ознакомиться с вводной статьей по использованию CNN в задачах обработки естественных языков, а также прочитать материал про методы векторного представление слов.
Читать дальше →
Всего голосов 36: ↑35 и ↓1 +34
Просмотры 50K
Комментарии 9

Вы еще не договорили слово “привет”, а мы уже знаем, кто вы

Блог компании Neurodata Lab Алгоритмы *Машинное обучение *Научно-популярное Звук
Это может делать наша нейросеть, распознающая человека по одному произнесенному слогу. Однако тема этой статьи не касается напрямую идентификации по голосу, хотя и будет связана с ней. Мы расскажем о нейросетевых фичах, так называемых d-vector, которые можно использовать в задачах обработки звука: от верификации до распознавания речи и эмоций.

image

Читать дальше →
Всего голосов 30: ↑26 и ↓4 +22
Просмотры 9.5K
Комментарии 8

Получение морфируемой 3D-модели лица на основе фотографии в произвольном ракурсе

Алгоритмы *Машинное обучение *Искусственный интеллект
Привет, Хабр! Представляю вашему вниманию перевод статьи «Learning 3D Face Morphable Model Out of 2D Images».

3DMM

Трёхмерная морфируемая модель лица (3D Morphable Model, далее 3DMM)  —  это статистическая модель структуры и текстуры лица, которая используются компьютерном зрении, компьютерной графике, при анализе человеческого поведения и в пластической хирургии.

Неповторимость каждой черты лица делает моделирование человеческого лица нетривиальной задачей. 3DMM создётся для получения модели лица в пространстве явных соответствий. Это означает поточечное соответствие между полученной моделью и другими моделями, позволяющими выполнять морфирование. Кроме того, в 3DMM должны быть отражены трансформации низкого уровня, такие как отличия мужского лица от женского, нейтрального выражения лица от улыбки.
Читать дальше →
Всего голосов 15: ↑13 и ↓2 +11
Просмотры 19K
Комментарии 4

Transfer Learning: как быстро обучить нейросеть на своих данных

Блог компании Binary District Python *Машинное обучение *Искусственный интеллект
Машинное обучение становится доступнее, появляется больше возможностей применять эту технологию, используя «готовые компоненты». Например, Transfer Learning позволяет использовать накопленный при решении одной задачи опыт для решения другой, аналогичной проблемы. Нейросеть сначала обучается на большом объеме данных, затем — на целевом наборе.

Food recognition

В этой статье я расскажу, как использовать метод Transfer Learning на примере распознавания изображений с едой. Про другие инструменты машинного обучения я расскажу на воркшопе «Machine Learning и нейросети для разработчиков».
Читать дальше →
Всего голосов 13: ↑11 и ↓2 +9
Просмотры 35K
Комментарии 8

Много иероглифов – много нейросетей: как построить эффективную систему распознавания для большого числа классов?

Блог компании ABBYY Машинное обучение *Искусственный интеллект
В прошлых статьях уже писали о том, как у нас устроены технологии распознавания текста:


Примерно так же до 2018 года было устроено распознавание японских и китайских символов: в первую очередь с использованием растровых и признаковых классификаторов. Но с распознаванием иероглифов есть свои трудности:

  1. Огромное количество классов, которое нужно различать.
  2. Более сложное устройство символа в целом.

image

Сказать однозначно, сколько символов насчитывает китайская письменность, так же сложно, как точно посчитать, сколько слов в русском языке. Но наиболее часто в китайской письменности используются ~10 000 символов. Ими мы и ограничили число классов, используемых при распознавании.

Обе описанные выше проблемы также приводят и к тому, что для достижения высокого качества приходится использовать большое количество признаков и сами эти признаки вычисляются на изображениях символов дольше.

Чтобы эти проблемы не приводили к сильнейшим замедлениям во всей системе распознавания, приходилось использовать множество эвристик, в первую очередь направленных на то, чтобы быстро отсечь значительное количество иероглифов, на которые эта картинка точно не похожа. Это всё равно не до конца помогало, а нам хотелось вывести наши технологии на качественно новый уровень.

Мы стали исследовать применимость свёрточных нейронных сетей, чтобы поднять как качество, так и скорость распознавания иероглифов. Хотелось заменить весь блок распознавания отдельного символа для этих языков с помощью нейронных сетей. В этой статье мы расскажем, как нам в итоге это удалось.
Читать дальше →
Всего голосов 29: ↑29 и ↓0 +29
Просмотры 7.1K
Комментарии 11

Формула для корейского, или распознаем хангыль быстро, легко и без ошибок

Блог компании ABBYY Высокая производительность *Обработка изображений *Машинное обучение *Искусственный интеллект
На сегодняшний день сделать распознавание корейских символов может любой студент, прослушавший курс по нейросетям. Дайте ему выборку и компьютер с видеокартой, и через некоторое время он принесёт вам сеть, которая будет распознавать корейские символы почти без ошибок.

Но такое решение будет обладать рядом недостатков:

Во-первых, большое количество необходимых вычислений, что влияет на время работы или требуемую энергию (что очень актуально для мобильных устройств). Действительно, если мы хотим распознавать хотя бы 3000 символов, то это будет размер последнего слоя сети. А если вход этого слоя равен хотя бы 512-ти, то получаем 512 * 3000 умножений. Многовато.

Во-вторых, размер. Тот же самый последний слой из предыдущего примера будет весить 512 * 3001 * 4 байт, то есть около 6-ти мегабайт. Это только один слой, вся сеть будет весить десятки мегабайт. Понятно, для настольного компьютера это проблема небольшая, но на смартфоне не все будут готовы хранить столько данных для распознавания одного языка.

В-третьих, такая сеть будет давать непредсказуемый результат на изображениях, которые не являются корейскими символами, но тем не менее используются в корейских текстах. В лабораторных условиях это не трудно, но для практического применения технологии этот вопрос придётся как-то решать.

И в-четвёртых, проблема в количестве символов: 3000, скорее всего, хватит чтобы, например, отличить в меню ресторана стейк от жареного морского огурца, но порой встречаются и более сложные тексты. Обучить сеть на большее количество символов будет сложно: она будет не только более медленной, но и возникнет проблема со сбором обучающей выборки, так как частота символов падает приблизительно экспоненциально. Конечно, можно доставать изображения из шрифтов и аугментировать их, но для обучения хорошей сети этого недостаточно.

И сегодня я расскажу, как нам удалось решить эти проблемы.
Читать дальше →
Всего голосов 58: ↑57 и ↓1 +56
Просмотры 19K
Комментарии 18
1