
Всем привет! Меня зовут Рома Смирнов. Я работаю продуктовым аналитиком в Lamoda Tech. Не так давно я столкнулся с необычным взглядом на то, как следует интерпретировать результаты A/B-эксперимента. Он заключается в том, что наблюдаемый аплифт — разницу средних, полученную на основе выборок, — необходимо сравнивать не только с критическим z- или t-значением, но еще и с MDE, минимальным эффектом, который мы ожидаем зафиксировать. Утверждается, что тест следует принимать только в том случае, если наблюдаемый аплифт лежит правее значения MDE.
Кажется, что на занятиях по статистике такому обычно не учат. Я обратился к традиционному источнику информации — Всемирной паутине (web, internet) — и нашел на эту тему хорошую статью болгарского гигачада A/B-тестирования Георгия Георгиева. В ней он приводит несколько аргументов, демонстрирующих несостоятельность описанного выше подхода.
В своей статье я буду использовать аргументы Георгия Георгиева, разбавленные моими мыслями и примерами на эту тему.