Введение
Кажется, стоит вам отвернуться, и появляется новый язык программирования, нацеленный на решение некоторого специфического набора задач. Увеличение количества языков программирования и данных глубоко взаимосвязано, и растущий спрос на вычисления в области «Data Science» является связанным феноменом. В области научных вычислений языки программирования Chapel, D и Julia являются весьма релевантными. Они возникли в связи с различными потребностями и ориентированы на различные группы проблем: Chapel фокусируется на параллелизме данных на отдельных многоядерных машинах и на больших кластерах; D изначально разрабатывался как более продуктивная и безопасная альтернатива C++; Julia разрабатывалась для технических и научных вычислений и была нацелена на освоение преимуществ обоих миров — высокой производительности и безопасности статических языков программирования и гибкости динамических языков программирования. Тем не менее, все они подчеркивают производительность как отличительную особенность. В этой статье мы рассмотрим, как различается их производительность при вычислении ядра матрицы, и представим подходы к оптимизации производительности и другие особенности языков, связанные с удобством использования.