Как стать автором
Обновить

Применение подхода eXtreme Multi-Label Classification для классификации записей материально-технических ресурсов

Блог компании Юнидата Обработка изображений *Хранение данных *Машинное обучение *Хранилища данных *

Данная работа является пересказом статьи Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. 2017. Deep Learning for Extreme Multi-label Text Classification. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '17). Association for Computing Machinery, New York, NY, USA, 115–124. https://doi.org/10.1145/3077136.3080834

Одно из направлений работ в нашей лаборатории Unidata Labs – классификация записей материально-технических ресурсов (МТР) с применением машинного обучения. В этой статье мы бы хотели кратко разобрать нашу постановку задачи как таковую, и после чего предложить разбор одного из методов, которым эта задача могла бы решаться.

Вкратце, продукт Юнидата МТР работает с данными, относящимися к материально-техническим ресурсам клиентов, которые представлены в Юнидата как реестр — т.е., коллекция записей. Записи МТР, как правило, содержат очень большое количество полей, но нас интересует только одно — полное наименование. Оно может выглядеть примерно так...

 

Читать далее
Всего голосов 3: ↑3 и ↓0 +3
Просмотры 1.5K
Комментарии 1