Как стать автором
Обновить
  • по релевантности
  • по времени
  • по рейтингу

Компьютерное зрение всем, даром

Блог компании Издательский дом «Питер» Python *C++ *Обработка изображений *DIY или Сделай сам


20 лет назад, в 1999 году, компания Kyocera выпустила первый мобильный телефон с цифровой камерой – Visual Phone VP-210. С тех пор, благодаря невероятно большому и растущему рынку мобильных устройств связи, ПЗС-матрицы цифровых камер совершили невероятный скачок по всем параметрам. Чувствительность, диапазон, размер, энергопотребление, но что ещё важнее – цена.

В наших реалиях модуль камеры, вообще-то весьма технологически сложное устройство, может стоить всего несколько долларов. Это кардинально меняет взгляд на многие процессы и задачи. Ранее сложной задачей было заполучить камеру, технически удовлетворяющую минимальным требованиям. Пройдя такое испытание, решение вопросов обработки изображений казалось лишь приятными хлопотами. Теперь же вопрос софта, который будет обрабатывать информацию с камеры, стоит более остро. Планка физического и экономического доступа к технологии упала так низко, что коснулась границы компетентности пользователя.

Давайте на реальных примерах рассмотрим, насколько сложно (или просто) сейчас работать с изображениями и какие задачи под силу айтишнику иной специализации.
Читать дальше →
Всего голосов 26: ↑19 и ↓7 +12
Просмотры 12K
Комментарии 6

OpenVINO хакатон: распознаем голос и эмоции на Raspberry Pi

Хакатоны Машинное обучение *Разработка на Raspberry Pi *Искусственный интеллект Интернет вещей
🔥 Технотекст 2020

30 ноября — 1 декабря в Нижнем Новгороде прошел OpenVINO хакатон. Участникам предлагалось создать прототип продуктового решения с использованием Intel OpenVINO toolkit. Организаторами был предложен список примерных тем, на которые можно было ориентироваться при выборе задачи, но финальное решение оставалось за командами. Кроме этого, поощрялось использование моделей, которые не входят в продукт.



В статье расскажем про то, как мы создавали свой прототип продукта, с которым в итоге заняли первое место.

Читать дальше →
Всего голосов 11: ↑11 и ↓0 +11
Просмотры 6.4K
Комментарии 2

GoLang и OpenCV (OpenVino && Cuda)

Работа с видео *Go *
Tutorial
Всем доброго времени суток. На хабре (да и вообще в интернете) уже немало статей о работе с OpenCV на Go.

Готовый код — это конечно интересно, а более подробную информацию об установке драйверов приходится собирать по кусочкам — постараюсь объединить все нужные телодвижения в одну статью.

image

Читать дальше →
Всего голосов 9: ↑8 и ↓1 +7
Просмотры 5.9K
Комментарии 5

Пробуем запустить GAN сети в OpenVINO

Блог компании Intel Python *Машинное обучение *Учебный процесс в IT
Tutorial

Репозиторий моделей Open Model Zoo библиотеки OpenVINO содержит много самых разных глубоких нейронных сетей из области компьютерного зрения (и не только). Но нам пока не встретилось GAN моделей, которые генерировали бы новые данные из шума. В этой статье мы создадим такую модель в Keras и запустим ее в OpenVINO.


Intro image

Читать дальше →
Всего голосов 7: ↑7 и ↓0 +7
Просмотры 2.6K
Комментарии 4

Детекция кашля на Intel NUC

Анализ и проектирование систем *Машинное обучение *Компьютерное железо Искусственный интеллект TensorFlow *
Собственно, да, на простом языке – мы захотели (и реализовали) детектор кашляющих людей, но не по позе (так как это требует больших ресурсов), а путем классификации входящих фото после детекции лица с расширением зоны.

Детектор кашля для Intel NUC
Читать дальше →
Всего голосов 10: ↑4 и ↓6 -2
Просмотры 2.1K
Комментарии 9

RPi-няня

Блог компании Recognitor Обработка изображений *Машинное обучение *Искусственный интеллект DIY или Сделай сам
Периодически меня подмывает сделать что-то странное. Очевидно бесполезную вещь, которая не оправдывает себя по объему вложенных средств, и через полгода после создания пылиться на полке. Но зато полностью оправдывает себя по количеству эмоций, полученному опыту и новым рассказам. На Хабре даже есть две моих статьи про такие эксперименты: Алкоорган и умная кормушка для птиц.

Что ж. Пришло время рассказать о новом эксперименте. Как собрал, что из этого вышло и как повторить.



К новому проекту меня подтолкнуло событие, в каком-то смысле, банальное — родился сын. Я заранее устроил себе отпуск на месяц. Но ребёнок оказался тихим — было свободное время. И спящий рядом деть.

Дома много разных embedded-железок для computer vision. В итоге решил сделать видео-няню. Но не такую унылую, которыми завалены все магазины. А что-то поумнее и поинтереснее.
Читать дальше →
Всего голосов 42: ↑40 и ↓2 +38
Просмотры 11K
Комментарии 7

OpenVINO становится «серебряной пулей» хакатонов по компьютерному зрению

Блог компании Intel Python *Машинное обучение *

Меня зовут Васильев Евгений, и команда в составе Дмитрия, Вячеслава и меня заняла 2 место на хакатоне "Цифровой прорыв" в Нижнем Новгороде в кейсе Ростелекома: Разработка системы мониторинга за поведением студента во время экзамена, и забрала приз в 100 000 рублей. После просмотра решений всех команд и возникла идея для данной заметки с громким названием.

Читать далее
Всего голосов 14: ↑13 и ↓1 +12
Просмотры 4K
Комментарии 5

Deep Learning Inference Benchmark — измеряем скорость работы моделей глубокого обучения

Блог компании Intel Высокая производительность *Python *Программирование *Машинное обучение *


Перед разработчиками встает задача определения производительности железа в задаче исполнения глубоких моделей. Например, хочется решить проблему анализа пола-возраста покупателей, которые заходят в магазин, чтобы в зависимости от этого менять оформление магазина или наполнение товаром. Вы уже знаете какие модели хотите использовать в вашем ПО, но до конца не понятно как выбрать железо. Можно выбрать самый топ и переплачивать как за простаивающие мощности, так и за электроэнергию. Можно взять самый дешевый i3 и потом вдруг окажется, что он может вывезти каскад из нескольких глубоких моделей на 8 камерах. А может быть камера всего одна, и для решения задачи достаточно Raspberry Pi с Movidius Neural Compute Stick? Поэтому хочется иметь инструмент для оценки скорости работы вашего инференса на разном железе, причем еще до начала обучения.

Читать дальше →
Всего голосов 11: ↑11 и ↓0 +11
Просмотры 2.4K
Комментарии 2

Быстрый старт в видеоаналитику: Опыт использования OpenVINO Toolkit в хакатонах

Обработка изображений *Хакатоны Машинное обучение *Искусственный интеллект
Из песочницы
image alt

Всем привет! Мы активные студенты НГТУ им. Р.Е. Алексеева, и мы хотим рассказать о своем опыте участия в хакатонах и создании IT-решений с использованием набора инструментов Intel – OpenVINO (Open Visual Inference & Neural Network Optimization) – отличной палочки-выручалочки при разработке систем видеоаналитики.


Для начала расскажем немного о себе. Мы студенты 3 курса ИРИТ, кафедра «Информатика и систем управления» – Татьяна Бородина, Тимофей Карклин, Александр Зенкин и Владимир Салтыков. С 1 курса мы активно участвуем в различных конкурсах IT-сферы, создав команду MirITeam[Прим. модератора: ссылка убрана, чтобы не нарушать правила. Google it.] – команду молодых и целеустремленных ребят. Мы разрабатываем стартапы в области компьютерного зрения и видеоаналитики, выступаем на научных конференциях и очень любим Хакатоны, их атмосферу и дух соревнования, где быстро нужно разработать хорошее, качественное решение, привнести в него «изюминку», и успешно (из опыта – это очень и очень важно) защитить свой проект перед жюри. Это ценный опыт реализации инновационных идей, получения новых знаний и качеств и, конечно же, командного сотрудничества.


Поделимся впечатлениями о последнем хакатоне, где мы участвовали –региональном этапе Всероссийского конкурса «Цифровой прорыв», где в рамках кейса ПАО «Ростелеком» мы занялись разработкой системы мониторинга за поведением студента во время экзамена год назад и предположить не могли, что это будет актуально и даже прикольно – сами выступаем в рамках испытуемых.

Читать далее
Всего голосов 11: ↑10 и ↓1 +9
Просмотры 3.3K
Комментарии 2

Как запихать нейронку в кофеварку

Блог компании Recognitor Анализ и проектирование систем *Машинное обучение *DevOps *Компьютерное железо
Tutorial
Мир машинного обучения продолжает стремительно развиваться. Всего за год технология может стать мейнстримом, и разительно измениться, придя в повседневность.

За прошедший год-полтора, одной из таких технологий, стали фреймворки выполнения моделей машинного обучения. Не то, что их не было. Но, за этот год, те которые были — стали сильно проще, удобнее, мощнее.



В статье я попробую осветить всё что повылезало за последнее время. Чтобы вы, решив использовать нейронную сеть в очередном калькуляторе, знали куда смотреть.
Всего голосов 31: ↑31 и ↓0 +31
Просмотры 15K
Комментарии 16

OpenVINO Toolkit – залог успешного внедрения видеоаналитики для качественной скоринговой оценки недвижимости

Open source *Обработка изображений *Хакатоны Машинное обучение *Искусственный интеллект

Всем привет! Сегодня расскажем и покажем, как машинное обучение и компьютерное зрение в очередной раз помогают в решении различных задач. В этот раз наша команда приняла участие в кейсе от ООО «Финкейс» в рамках конкурса «Цифровой прорыв» Северо-Кавказского IT-хаба.

Нам предложили разработать прототип интеллектуальной системы по определению качества ремонта квартир на основе алгоритмов компьютерного зрения с использованием инструментария Intel – OpenVINO (Open Visual Inference & Neural Network Optimization).

Кейс:

При оценке любого объекта недвижимости мы сталкиваемся с задачей определения качества ремонта квартир. Качество отделки является одним из важных параметров ценообразования, который, к сожалению, часто не указывают в информации об объекте. Требуется разработать алгоритм оценки, позволяющий по фотографии определить наличие ремонта и качество отделки для последующего использования результата при оценке стоимости объектов.

Для решения задачи было реализовано два классификатора: первый для определения типа ремонта (без отделки, косметический ремонт, стандартный ремонт и ремонт класса люкс), второй – для определения типа помещения. Для обучения классификатора по типу ремонта использовалась модель нейронной сети Resnet50. Для ее обучения мы собрали датасет из 50 тысяч изображений, по 12500 изображений для каждой категории. Обучили и сконвертировали её в ONNX, а из ONNX уже в OpenVINO.

Для конвертации нашей ONNX модели в формат OpenVINO при помощи инструмента Model Optimizer использовалась следующая команда:

Читать далее
Всего голосов 1: ↑0 и ↓1 -1
Просмотры 1.6K
Комментарии 2

Проекты Центра разработки Intel в России. OpenVINO Toolkit

Блог компании Intel Программирование *Машинное обучение *История IT


Выполняя свое обещание, в новом году мы продолжаем публикацию статей из рубрики «Проекты Центра разработки Intel в России». Эта серия посвящена относительно молодому, но уже получившему заслуженную популярность набору инструментов для разработки программ, использующих машинное зрение и Deep Learning — Open Visual Inference & Neural Network Optimization toolkit или, коротко, OpenVINO.
На наши вопросы об истории и сущности проекта ответил его главный архитектор Юрий Горбачев.
Читать дальше →
Всего голосов 8: ↑8 и ↓0 +8
Просмотры 2.4K
Комментарии 10

Под капотом OpenVINO (Intel Neural Stick)

Машинное обучение *Производство и разработка электроники *Интернет вещей

Привет, Habr! Сегодня я хочу рассказать немного об аппаратном ускорителе Neural Compute Stick. Расскажу с точки зрения hardware-разработчика. Известно, что OpenVINO взаимодействует с Neural Compute Stick, а сердцем самого стика является чип Movidius Myriad X. Некоторые характеристики данного чипа можно найти в блоге компании Intel. Сейчас мы остановимся на возможностях чипа и способах его применения немного подробнее.

Читать далее
Всего голосов 6: ↑6 и ↓0 +6
Просмотры 2.9K
Комментарии 2

Что такое OpenVINO?

Блог компании Intel Python *Машинное обучение *Научно-популярное Искусственный интеллект
Tutorial

Привет всем читателем habr.com! Мы студенты НГТУ им. Р.Е. Алексеева, и хотим рассказать о своем опыте работы с набором инструментов Intel – OpenVINO (Open Visual Inference & Neural Network Optimization).

Для начала давайте познакомимся. Мы- студенты 2 курса ИРИТ, кафедры «Информатика и системы управления» – Божко Мария и Сторожева Ксения.  Наше знакомство с OpenVINO произошло еще на первом курсе, когда преподаватели пригласили поучаствовать в воркшопе по компьютерному зрению от Intel, направленном на получение практического опыта работы с готовыми моделями компании. Заинтересовавшись темой машинного обучения, мы изучили множество статей, посвященных нейронным сетям. К нашему удивлению, мы не нашли ни одной статьи, в которой довольно подробно, понятно и, главное, доступно для людей любого уровня знаний было бы рассказано об OpenVINO. Безусловно, информация по этой теме имеется в интернете, но она разрознена и к тому же представлена на английском языке, большинство авторов очень кратко описывает OpenVINO и все связанное с ним, из таких статей сложно сформировать полное представление об этой технологии. Поэтому у нас родилась идея - написать публикацию с описанием этого набора инструментов простым и понятным языком для тех, кто только начинает свое знакомство с OpеnVINO.

Читать далее
Всего голосов 15: ↑13 и ↓2 +11
Просмотры 9.4K
Комментарии 3

Приемы повышения производительности инференса глубоких моделей с DL Workbench. Часть 1 — введение и установка

Блог компании Intel Высокая производительность *Обработка изображений *Искусственный интеллект

Если у вас есть проект с интенсивной обработкой данных глубокими моделями (или еще нет, но вы собираетесь его создать), то вам будет полезно познакомиться с приемами по повышению их производительности и уменьшению затрат на покупку / аренду вычислительных мощностей. Тем более, что многие из приемов сейчас выполняются буквально за несколько кликов мышкой, но при этом позволяют повысить производительность на порядок. В этом посте мы рассмотрим какие оптимизации бывают, установим Docker на Windows 10 и запустим DL Workbench, измерим производительность инференса без оптимизации и с применением оных.

Читать далее
Всего голосов 6: ↑6 и ↓0 +6
Просмотры 1.3K
Комментарии 6

Повышение производительности инференса глубоких моделей с DL Workbench. Часть 2 — квантизация и Throughput mode

Блог компании Intel Высокая производительность *Обработка изображений *Искусственный интеллект

В первой части мы уже познакомились с тем, какие существуют методы для повышения производительности, что такое DL Workbench, как в него загрузить модель для оптимизации. Настало время познакомиться еще с двумя методами повышения производительности инференса - квантизация моделей и Throughput mode.

Читать далее
Всего голосов 2: ↑2 и ↓0 +2
Просмотры 912
Комментарии 0

Edge платы для домашнего Computer Vision

Блог компании Recognitor Обработка изображений *Машинное обучение *Компьютерное железо DIY или Сделай сам

Я люблю делать всякие странные штуки с Computer Vision. Назовем их “условно полезные девайсы”. Из того, что я выкладывал на Хабре, - рассказ про умную кормушку для птиц и камера для слежения за ребенком. По работе тоже примерно тем же самым занимаюсь. Так что люблю следить за актуальным рынком устройств которые подходят для ComputerVision. Свой прошлый обзор я делал полтора года назад. Что для Embedded - много. В этом я сосредоточусь на устройствах которые вышли недавно + на устройствах которые будут интересны для хоббийных проектов.

Читать далее
Всего голосов 38: ↑37 и ↓1 +36
Просмотры 8.5K
Комментарии 14

Защита моделей нейронных сетей при помощи аппаратных ключей SenseLock

Информационная безопасность *Искусственный интеллект

Нейронные сети помогают нам решать различные задачи в сфере AI и компьютерного зрения. Например, детектирование, классификация, сегментация, распознавание объектов и многие другие. Во многих случаях используются готовые предобученные модели, которые дообучаются по собственным данным разработчика для получения готового отраслевого решения. В этом случае ценность представляет как сам датасет (набор размеченных данных для дообучения), так и полученная модель. Если модель эксплуатируется у Заказчика, распространяется по лицензионной схеме и обладает достаточными для рынка показателями точности, то она сама по себе представляет ценность, так как может быть скопирована и запущена в рамках сторонних решений.

Одной из задач, которая встает на этапе деплоймента готовых решений на базе нейронных сетей – это защита разработанных и предобученных моделей от несанкционированного использования с интеграцией системы лицензирования и лимитированием сроков в варианте срочных лицензий.

Защита нейронной сети может быть физическая и юридическая. Юридическая защита обычно заключается в использовании «водяных знаков», и поможет доказать, что нейронная сеть используется не законно. Физическая защита сводится к блокировке защищенной модели. В данной статье мы рассмотрим физическую защиту на основе ключей SenseLock и фреймворка Intel OpenVINO.

Мы в своих решениях используем оптимизацию моделей и инференс (исполнение моделей) в фреймворке Intel OpenVINO. Это позволяет оптимизировать скорость исполнения нейронных сетей на всей линейке устройств Intel начиная от CPU, встроенной графики iGPU и заканчивая ускорителями VPU на базе Intel Movidius (MyriadX).

Читать далее
Всего голосов 4: ↑3 и ↓1 +2
Просмотры 1.6K
Комментарии 0

Разбираемся, как подавить шум в речи с помощью глубокого обучения и OpenVINO

Блог компании Intel Python *Звук

Данная статья будет полезна студентам и тем, кто хочет разобраться с тем, как происходит шумоподавление речи (Speech Denoising) с помощью глубокого обучения. На Хабре уже были статьи по данной тематике несколько лет назад (раз, два), но нашей целью является желание дать несколько более глубокое понимание процесса работы со звуком. 

Читать далее
Всего голосов 3: ↑3 и ↓0 +3
Просмотры 3.1K
Комментарии 6

Сим-сим откройся: как я научил дверь своего подъезда узнавать меня в лицо

Информационная безопасность *Обработка изображений *
Из песочницы

Пятничный рабочий день на удалёнке уже подходил к концу, как в дверь постучали, чтобы сообщить об установке нового домофона. Узнав, что новый домофон имеет мобильное приложение, позволяющее отвечать на звонки не находясь дома, я заинтересовался и сразу же загрузил его на свой телефон. Залогинившись, я обнаружил интересную особенность этого приложения — даже без активного вызова в мою квартиру я мог смотреть в камеру домофона и открывать дверь в произвольный момент времени. "Да это же онлайн АРI к двери подъезда!" — щёлкнуло в голове. Судьба предстоящих выходных была предрешена.

Видеодемонстрация в конце статьи.

Читать далее
Всего голосов 23: ↑23 и ↓0 +23
Просмотры 9.7K
Комментарии 36
1