Как стать автором
Обновить
  • по релевантности
  • по времени
  • по рейтингу

Nvidia создала нейросеть, которая преобразует двухмерные объекты в трехмерные

Работа с 3D-графикой *Машинное обучение *Искусственный интеллект
image

Nvidia создала AI-систему DIB-R (differentiable interpolation-based renderer), которая построена на основе ML-фреймворка PyTorch. Система способна преобразовывать двухмерные изображения в трехмерные объекты.

DIB-R обрабатывает картинку, а затем преобразует ее в высокоточную 3D-модель. Учитываются формы, текстура, цвета и освещение объекта. При этом задействована архитектура кодера-декодера, типа нейронной сети, которая преобразует входные данные в вектор, используемый для прогнозирования конкретной информации.

Вся работа занимает менее чем 100 миллисекунд.
Читать дальше →
Всего голосов 18: ↑17 и ↓1 +16
Просмотры 8.4K
Комментарии 18

OpenAI перейдет на платформу машинного обучения PyTorch от Facebook

Управление разработкой *Искусственный интеллект IT-компании
image

OpenAI объявила, что при реализации будущих проектов перейдет на платформу машинного обучения PyTorch от Facebook, отказавшись от платформы TensorFlow от Google.

В качестве причины для перехода OpenAI сослалась на эффективность, масштабы и адаптивность PyTorch.
Читать дальше →
Всего голосов 13: ↑12 и ↓1 +11
Просмотры 2.5K
Комментарии 0

Microsoft представила DeepSpeed для тренировки нейросетей на моделях с >100 млрд параметров

Управление разработкой *Искусственный интеллект
image

Microsoft выпускает библиотеку с открытым исходным кодом под названием DeepSpeed, которая значительно расширяет возможности обучения для больших моделей естественного языка. Она дает возможность обучения нейросетей на моделях со 100 млрд параметров и более. DeepSpeed ​​совместима с PyTorch.
Читать дальше →
Всего голосов 13: ↑13 и ↓0 +13
Просмотры 5.3K
Комментарии 1

PyTorch — ваш новый фреймворк глубокого обучения

Python *Программирование *Машинное обучение *

Gotta Torch?


PyTorch — современная библиотека глубокого обучения, развивающаяся под крылом Facebook. Она не похожа на другие популярные библиотеки, такие как Caffe, Theano и TensorFlow. Она позволяет исследователям воплощать в жизнь свои самые смелые фантазии, а инженерам с лёгкостью эти фантазии имплементировать.


Данная статья представляет собой лаконичное введение в PyTorch и предназначена для быстрого ознакомления с библиотекой и формирования понимания её основных особенностей и её местоположения среди остальных библиотек глубокого обучения.

Fire walk with me
Всего голосов 66: ↑64 и ↓2 +62
Просмотры 112K
Комментарии 20

Когда лучше не использовать глубинное обучение

Data Mining *Алгоритмы *Big Data *Математика *Машинное обучение *
Перевод
Я понимаю, что странно начинать блог с негатива, но за последние несколько дней поднялась волна дискуссий, которая хорошо соотносится с некоторыми темами, над которыми я думал в последнее время. Всё началось с поста Джеффа Лика в блоге Simply Stats с предостережением об использовании глубинного обучения на малом размере выборки. Он утверждает, что при малом размере выборки (что часто наблюдается в биологии), линейные модели с небольшим количеством параметров работают эффективнее, чем нейросети даже с минимумом слоёв и скрытых блоков.

Далее он показывает, что очень простой линейный предиктор с десятью самыми информативными признаками работает эффективнее простой нейросети в задаче классификации нулей и единиц в наборе данных MNIST, при использовании всего около 80 образцов. Эта статья сподвигла Эндрю Бима написать опровержение, в котором правильно обученная нейросеть сумела превзойти простую линейную модель, даже на очень малом количестве образцов.

Такие споры идут на фоне того, что всё больше и больше исследователей в области биомедицинской информатики применяют глубинное обучение на различных задачах. Оправдан ли ажиотаж, или нам достаточно линейных моделей? Как всегда, здесь нет однозначного ответа. В этой статье я хочу рассмотреть случаи применения машинного обучения, где использование глубоких нейросетей вообще не имеет смысла. А также поговорить о распространённых предрассудках, которые, на мой взгляд, мешают действительно эффективно применять глубинное обучение, особенно у новичков.
Читать дальше →
Всего голосов 19: ↑18 и ↓1 +17
Просмотры 15K
Комментарии 5

Смена пола и расы на селфи с помощью нейросетей

Блог компании Open Data Science Алгоритмы *Обработка изображений *Математика *Машинное обучение *

Привет, Хабр! Сегодня я хочу рассказать вам, как можно изменить свое лицо на фото, используя довольно сложный пайплайн из нескольких генеративных нейросетей и не только. Модные недавно приложения по превращению себя в даму или дедушку работают проще, потому что нейросети медленные, да и качество, которое можно получить классическими методами компьютерного зрения, и так хорошее. Тем не менее, предложенный способ мне кажется очень перспективным. Под катом будет мало кода, зато много картинок, ссылок и личного опыта работы с GAN'ами.

Читать дальше →
Всего голосов 100: ↑95 и ↓5 +90
Просмотры 42K
Комментарии 67

Pygest #22. Релизы, статьи, интересные проекты, пакеты и библиотеки из мира Python [18 января 2018 — 4 февраля 2018]

Python *Читальный зал

image Всем привет! Это уже двадцать второй выпуск дайджеста на Хабрахабр о новостях из мира Python. В этом выпуске вы найдете статьи о MicroPython, сравнение производительности Python, Numba и C ++, основах веб скрапинга и многое другое.

Присылайте свои интересные события из мира Python.

С предыдущим digest можно ознакомиться здесь.

Читать дальше →
Всего голосов 16: ↑16 и ↓0 +16
Просмотры 8.3K
Комментарии 2

Соревнование Pri-matrix Factorization на DrivenData с 1ТБ данных — как мы заняли 3 место (перевод)

Работа с видео *Python *Обработка изображений *Машинное обучение *
Из песочницы

Привет, Хабр! Представляю вашему вниманию перевод статьи "Animal detection in the jungle — 1TB+ of data, 90%+ accuracy and 3rd place in the competition".


Или чему мы научились, как выигрывать призы в таких соревнованиях, полезные советы + некоторые мелочи


TLDR



Суть соревнования — например, вот это случайное видео с леопардом. Все видеоролики длятся 15 секунд, а их 400 тысяч...



Заключительные результаты в 3 часа ночи, когда конкурс закончился — я был в поезде, но мой коллега засабмитил заявку за 10 минут до окончания конкурса


Если вам интересно узнать как мы справились, чему научились, и как вам участвовать в подобном, то прошу под кат.

Всего голосов 44: ↑42 и ↓2 +40
Просмотры 7.2K
Комментарии 5

Из спутниковых снимков в графы (cоревнование SpaceNet Road Detector) — попадание топ-10 и код (перевод)

Python *Обработка изображений *Big Data *Машинное обучение *

Привет, Хабр! Представляю вам перевод статьи.



Это Вегас с предоставленной разметкой, тестовым датасетом и вероятно белые квадраты — это отложенная валидация (приват). Выглядит прикольно. Правда эта панорама лучшая из всех четырех городов, так вышло из-за данных, но об этом чуть ниже.


0. TLDR


Ссылка на соревнование и подробное описание.


Быстрая картинка сайта, кому лень ходить.


Мы закончили предварительно на 9-м месте, но позиция может измениться после дополнительного тестирования сабмитов организаторами.


Также я потратил некоторое время на написание хорошего читаемого кода на PyTorch и генераторов данных. Его можно без застенчивости использовать для своих целей (только поставьте плюсик). Код максимально простой и модульный, плюс читайте дальше про best practices для семантической сегментации.


Кроме того, не исключено, что мы напишем пост про понимание и разбор Skeleton Network, которую в итоге использовали все финалисты в топе соревнования для преобразования маски изображения в граф.


Суть соревнования
Суть соревнования на 1 картинке

Читать дальше →
Всего голосов 36: ↑34 и ↓2 +32
Просмотры 8.1K
Комментарии 4

Применяем Deep Watershed Transform в соревновании Kaggle Data Science Bowl 2018

Python *Data Mining *Обработка изображений *Машинное обучение *

Применяем Deep Watershed Transform в соревновании Kaggle Data Science Bowl 2018


Представляем вам перевод статьи по ссылке и оригинальный докеризированный код. Данное решение позволяет попасть примерно в топ-100 на приватном лидерборде на втором этапе конкурса среди общего числа участников в районе нескольких тысяч, используя только одну модель на одном фолде без ансамблей и без дополнительного пост-процессинга. С учетом нестабильности целевой метрики на соревновании, я полагаю, что добавление нескольких описанных ниже фишек в принципе может также сильно улучшить и этот результат, если вы захотите использовать подобное решение для своих задач.



описание пайплайна решения

Читать дальше →
Всего голосов 31: ↑29 и ↓2 +27
Просмотры 7K
Комментарии 0

Экскурсия по PyTorch

Блог компании Издательский дом «Питер» Python *Программирование *Алгоритмы *Машинное обучение *
Перевод
Привет, Хабр!

Еще до конца мая у нас выйдет перевод книги Франсуа Шолле "Глубокое обучение на Python" (примеры с использованием библиотек Keras и Tensorflow). Не пропустите!



Но мы, естественно, смотрим в надвигающееся будущее и начинаем присматриваться к еще более инновационной библиотеке PyTorch. Сегодня вашему вниманию предлагается перевод статьи Питера Голдсборо, готового устроить вам долгую прогулку ознакомительную экскурсию по этой библиотеке. Под катом много и интересно.
Читать дальше →
Всего голосов 27: ↑24 и ↓3 +21
Просмотры 32K
Комментарии 9

Dive into pyTorch

Блог компании OTUS Python *Машинное обучение *
Tutorial

Всем привет. Меня зовут Артур Кадурин, я руковожу исследованиями в области глубокого обучения для разработки новых лекарственных препаратов в компании Insilico Medicine. В Insilico мы используем самые современные методы машинного обучения, а также сами разрабатываем и публикуем множество статей для того чтобы вылечить такие заболевания как рак или болезнь Альцгеймера, а возможно и старение как таковое.


В рамках подготовки своего курса по глубокому обучению я собираюсь опубликовать серию статей на тему Состязательных(Adversarial) сетей с разбором того что же это такое и как этим пользоваться. Эта серия статей не будет очередным обзором GANов(Generative Adversarial Networks), но позволит глубже заглянуть под капот нейронных сетей и охватит более широкий спектр архитектур. Хотя GANы мы конечно тоже разберем.

Читать дальше →
Всего голосов 32: ↑31 и ↓1 +30
Просмотры 12K
Комментарии 10

Введение в состязательные сети

Блог компании OTUS Python *Машинное обучение *

Всем привет. Этой статьей я начинаю серию рассказов о состязательных сетях. Как и в предыдущей статье я подготовил соответствующий докер-образ в котором уже все готово для того чтобы воспроизвести то что написано здесь ниже. Я не буду копировать весь код из примера сюда, только основные его части, поэтому, для удобства советую иметь его рядом для более простого понимания. Докер контейнер доступен здесь, а ноутбук, utils.py и докерфайл здесь.


Несмотря на то, что фреймворк состязательных сетей был предложен Йеном Гудфеллоу в его уже знаменитой работе Generative Adversarial Networks ключевая идея пришла к нему из работ по доменной адаптации(Domain adaptation), поэтому и начнем мы обсуждение состязательных сетей именно с этой темы.


Представьте, что у вас есть два источниках данных о похожих наборах объектов. Например это могут быть медицинские записи разных социально-демографических групп (мужчины/женщины, взрослые/дети, азиаты/европейцы...). Типичные анализы крови представителей разных групп будут отличаться, поэтому модель, предсказывающая, скажем, риск сердечно-сосудистых заболеваний(ССЗ), обученная на представителях одной выборки не может применяться к представителям другой выборки.

Читать дальше →
Всего голосов 32: ↑30 и ↓2 +28
Просмотры 13K
Комментарии 2

Состязательные атаки (adversarial attacks) в соревновании Machines Can See 2018

Python *Обработка изображений *Машинное обучение *
Или как я оказался в команде победителей соревнования Machines Can See 2018 adversarial competition.

image
Суть любых состязательных атак на примере.

Так уж получилось, что мне довелось поучаствовать в соревновании Machines Can See 2018. Я присоединился к соревнованию я поздновато (примерно за неделю до окончания), но в конечном итоге оказался в команде из 4 человек, где вклад троих из нас (включая меня) был необходим для победы (убрать одну составляющую — и мы бы оказались в аутсайдерах).

Цель соревнования — изменять лица людей так, что сверточная нейросеть, предоставленная как черный ящик организаторами, не могла различить лицо-источник от лица-цели. Допустимое количество изменений было ограничено SSIM.
Читать дальше →
Всего голосов 32: ↑28 и ↓4 +24
Просмотры 11K
Комментарии 6

Равномерно распределяем точки по сфере в pytorch и tensorflow

Блог компании HeadHunter Математика *Машинное обучение *Искусственный интеллект
Tutorial

Этот текст написан для тех, кто интересуется глубоким обучением, кто хочет использовать разные методы библиотек pytorch и tensorflow для минимизации функции многих переменных, кому интересно научиться превращать последовательно выполняющуюся программу в выполняемые с помощью numpy векторизованные матричные вычисления. А ещё можно научиться делать мультфильм из данных, визуализированных с помощью PovRay и vapory.


Читать дальше →
Всего голосов 32: ↑32 и ↓0 +32
Просмотры 8.2K
Комментарии 8

Обучение и тестирование нейронных сетей на PyTorch с помощью Ignite

Блог компании Open Data Science Open source *Python *Обработка изображений *Машинное обучение *
Tutorial

Привет, Хабр, в этой статье я расскажу про библиотеку ignite, с помощью которой можно легко обучать и тестировать нейронные сети, используя фреймворк PyTorch.


С помощью ignite можно писать циклы для обучения сети буквально в несколько строк, добавлять из коробки расчет стандартных метрик, сохранять модель и т.д. Ну, а для тех кто переехал с TF на PyTorch, можно сказать, что библиотека ignite — Keras для PyTorch.


В статье будет детально разобран пример обучения нейронной сети для задачи классификации, используя ignite


Читать дальше →
Всего голосов 36: ↑36 и ↓0 +36
Просмотры 25K
Комментарии 4

Building client routing / semantic search at Profi.ru

Машинное обучение *Natural Language Processing *

Building client routing / semantic search and clustering arbitrary external corpuses at Profi.ru


TLDR


This is a very short executive summary (or a teaser) about what we managed to do in approximately 2 months in the Profi.ru DS department (I was there for a bit longer, but onboarding myself and my team was a separate thing to be done at first).

Читать дальше →
Всего голосов 29: ↑21 и ↓8 +13
Просмотры 3.2K
Комментарии 10

DeOldify: программа для раскрашивания чёрно-белых изображений

Open source *Обработка изображений *Машинное обучение *Софт
Перевод
Если вкратце, задача этого проекта — раскрашивать и восстанавливать старые снимки. Я немного углублюсь в детали, но сначала давайте посмотрим фотографии! Кстати, большинство исходных изображений взято из подреддита r/TheWayWeWere, благодарю всех за такие качественные большие снимки.

Это лишь немногие примеры, и они вполне типичные!

Мария Андерсон в роли Маленькой феи и её паж Любовь Рябцова в балете «Спящая красавица» в Императорском театре, Санкт-Петербург, Россия, 1890


Читать дальше →
Всего голосов 48: ↑48 и ↓0 +48
Просмотры 45K
Комментарии 62

Что требуется сделать в языке Java для полноценной поддержки машинного обучения

Блог компании Издательский дом «Питер» Python *Java *Профессиональная литература Машинное обучение *
Перевод
Здравствуйте, коллеги!

Из последних известий по нашим планируемым новинкам из области ML/DL:

Нишант Шакла, "Машинное обучение с Tensorflow" — книга в верстке, ожидается в магазинах в январе

Делип Рао, Брайан Макмахан, "Обработка естественного языка на PyTorch" — контракт подписан, планируем приступать к переводу в январе.

В данном контексте мы хотели в очередной раз вернуться к болезненной теме — слабой проработке темы ML/DL в языке Java. Из-за явной незрелости этих решений и алгоритмов на языке Java мы когда-то приняли решение отказаться от книги Гибсона и Паттерсона по DL4J, и публикуемая сегодня статья Хамфри Шейла (Humphrey Sheil) подсказывает, что мы, вероятно, были правы. Предлагаем познакомиться с мыслями автора о том, каким образом язык Java мог бы наконец составить конкуренцию Python в машинном обучении
Читать дальше →
Всего голосов 14: ↑14 и ↓0 +14
Просмотры 11K
Комментарии 4

Mixture Density Networks

Python *Программирование *Алгоритмы *Математика *Машинное обучение *

Всем привет!

Давайте поговорим о, как вы уже наверное смогли догадаться, нейронных сетях и машинном обучении. Из названия понятно, что будет рассказано о Mixture Density Networks, далее просто MDN, переводить название не хочу и оставлю как есть. Да, да, да… будет немного скучной математики и теории вероятности, но без неё, к сожалению, или к счастью, тут уж сами решайте, трудно представить мир машинного обучения. Но спешу вас успокоить, ее будет относительно мало и она будет не сильно сложная. Да и вообще ее можно будет пропустить, а просто посмотреть на небольшое количество кода на Python и PyTorch, все верно, сеть мы будем писать с помощью PyTorch, а так же на различные графики с результатами. Но самое главное то, что будет возможность немного разобраться и понять что же такое MD сети.

Что ж начнем!
Читать дальше →
Всего голосов 21: ↑21 и ↓0 +21
Просмотры 9K
Комментарии 9