Как стать автором
Обновить

Сверточная нейронная сеть, часть 1: структура, топология, функции активации и обучающее множество

Машинное обучение *
Из песочницы

Предисловие


Данные статьи (часть 2) являются частью моей научной работы в ВУЗе, которая звучала так: «Программный комплекс детектирования лиц в видеопотоке с использованием сверточной нейронной сети». Цель работы была — улучшение скоростных характеристик в процессе детектирования лиц в видеопотоке. В качестве видеопотока использовалась камера смартфона, писалось десктопное ПС (язык Kotlin) для создания и обучения сверточной нейросети, а также мобильное приложение под Android (язык Kotlin), которая использовала обученную сеть и «пыталась» распознать лица из видеопотока камеры. Результаты скажу получились так себе, использовать точную копию предложенной мной топологии на свой страх и риск (я бы не рекомендовал).
Читать дальше →
Всего голосов 23: ↑23 и ↓0 +23
Просмотры 195K
Комментарии 7

Эффективные методы сжатия данных при тренировке нейросетей. Лекция в Яндексе

Блог компании Яндекс Сжатие данных *Машинное обучение *
Не так давно в Яндекс приезжал Геннадий Пехименко — профессор Университета Торонто и PhD Университета Карнеги-Меллон. Он прочитал лекцию об алгоритмах кодирования, которые позволяют обходить проблему ограничения памяти GPU при обучении глубоких нейронных сетей.


— Я вхожу в несколько групп Университета Торонто. Одна из них — Computer Systems and Networking Group. Есть еще моя собственная группа — EcoSystem Group. Как видно из названий групп, я не специалист непосредственно в машинном обучении. Но нейронные сети сейчас достаточно популярны, и людям, которые занимаются компьютерной архитектурой и сетями, компьютерными системами, приходится сталкиваться с этими приложениями на постоянной основе. Поэтому последние полтора-два года этой темой я тоже плотно занимаюсь.
Всего голосов 41: ↑41 и ↓0 +41
Просмотры 12K
Комментарии 7