
Не влезай. Убьет! (с)
В свежем номере журнала The Lancet опубликована моя статья — любопытная карта и небольшое к ней пояснение. Решил рассказать об этом на Хабре, поскольку есть надежда, что реализованный способ визуализации данных может пригодиться еще кому-то.
Kashnitsky, I., & Schöley, J. (2018). Regional population structures at a glance. The Lancet, 392(10143), 209–210. https://doi.org/10.1016/S0140-6736(18)31194-2
Собственно, вот карта в высоком разрешении (кликабельно).
Карту можно воспроизвести точь-в-точь за несколько минут, код на гитхабе.
В 2014-м году я присоединился к небольшой команде в Schibsted Media Group в качестве 6-го специалиста по Data Science в этой компании. С тех пор я поработал над многими начинаниями в области Data Science в организации, в которой теперь таких уже 40 с лишним человек. В этом посте я расскажу о некоторых вещах, о которых узнал за последние четыре года, сперва как специалист, а затем как менеджер Data Science.
Этот пост следует примеру Robert Chang и его отличной статьи «Doing Data Science in Twitter», которую я нашел очень ценной, когда впервые прочитал ее в 2015-м году. Цель моего собственного вклада ― поведать настолько же полезные мысли специалистам и менеджерам Data Science по всему миру.
Я поделил пост на две части:
Debian Wheezy
, Python 2.7.3
, R 2.15
.Это, пожалуй, самая интересная статья о перспективах применения смарт-контрактов в деловой практике, которая мне попадалась (правда, попадалось их не так уж много). Она написана юристами и опубликована в конце мая на сайте Гарварда. Хоть и на примере США, текст раскрывает такие вопросы как применение законодательства к сделкам на смарт-контрактах, проблему понимания сторонами кода, проблему оракулов, риски и другие.
В том числе вы найдете объяснение, почему вендинговые аппараты (как пример наиболее наглядной и простой реализации смарт-контракта) люди используют давно и успешно, а использование более сложных смарт-контрактов, например в логистике или страховании, пока затруднительно.
Здравствуйте, коллеги. Рассмотрим обычный онлайн-эксперимент в некоторой компании «Усы и когти». У неё есть веб-сайт, на котором есть красная кнопка в форме прямоугольника с закругленными краями. Если пользователь нажимает на эту кнопку, то где-то в мире мурлычет от радости один котенок. Задача компании — максимизация мурлыкания. Также есть отдел маркетинга, который усердно исследует формы кнопок и то, как они влияют на конверсию показов в клико-мурлыкания. Потратив почти весь бюджет компании на уникальные исследования, отдел маркетинга разделился на четыре противоборствующие группировоки. У каждой группировки есть своя гениальная идея того, как должна выглядеть кнопка. В целом никто не против формы кнопки, но красный цвет раздражает всех маркетологов, и в итоге было предложено четыре альтернативных варианта. На самом деле, даже не так важно, какие именно это варианты, нас интересует тот вариант, который максимизирует мурлыкания. Маркетинг предлагает провести A/B/n-тест, но мы не согласны: и так на эти сомнительные исследования спущено денег немерено. Попробуем осчастливить как можно больше котят и сэкономить на трафике. Для оптимизации трафика, пущенного на тесты, мы будем использовать шайку многоруких байесовских бандитов (bayesian multi-armed bandits). Вперед.
Для тех кому лень читать — ссылка на датасет внизу статьи.
What — анализ статей новостного ресурса Lenta.ru за последние 18 лет (с 1 сентября 1999 года). How — средствами языка R (с привлечением программы MySterm от Yandex на отдельном участке). Why… В моем случае, коротким ответом на вопрос "почему" будет "получение опыта" в Big Data. Более развернутым же объяснением будет "выполнение какого-либо реального задания, в рамках которого я смогу применить навыки, полученные во время обучения, а так же получить результат, который я бы смог показывать в качестве подтверждения своих умений".
// Таблица рекордов
int score1 = 0;
int score2 = 0;
int score3 = 0;
int score4 = 0;
int score5 = 0;
// Таблица рекордов
const int NUM_HIGH_SCORES = 5;
int highScore[NUM_HIGH_SCORES] = {0};
Связанные проекты сообщества Open Data (проект Linked Open Data Cloud). Многие датасеты на этой диаграмме могут включать в себя данные, защищенные авторским правом, и они не упоминаются в данной статье
Если вы прямо сейчас не делаете свой ИИ, то другие будут делать его вместо вас для себя. Ничто более не мешает вам создать систему на основе машинного обучения. Есть открытая библиотека глубинного обучения TensorFlow, большое количество алгоритмов для обучения в библиотеке Torch, фреймворк для реализации распределенной обработки неструктурированных и слабоструктурированных данных Spark и множество других инструментов, облегчающих работу.
Добавьте к этому доступность больших вычислительных мощностей, и вы поймете, что для полного счастья не хватает лишь одного ингредиента — данных. Огромное количество данных находится в открытом доступе, однако непросто понять, на какие из открытых датасетов стоит обратить внимание, какие из них годятся для проверки идей, а какие могут быть полезны в качестве средства проверки потенциальных продуктов или их свойств до того, как вы накопите собственные проприетарные данные.
Мы разобрались в этом вопросе и собрали данные по датасетам, удовлетворяющим критериям открытости, востребованности, скорости работы и близости к реальным задачам.
Всем привет!
Сегодня мы поговорим о визуализации геоданных. Имея на руках статистику, явно имеющую пространственную привязку, всегда хочется сделать красивую карту. Желательно, с навигацией да инфоокнами В тетрадках. И, конечно же, чтоб потом можно было показать всему интернету свои успехи в визуализации!
В качестве примера возьмем недавно отгремевшие муниципальные выборы в Москве. Сами данные можно взять с сайта мосгоризбиркома, в можно просто забрать датасеты с https://gudkov.ru/. Там даже есть какая-никакая визуализация, но мы пойдем глубже. Итак, что же у нас в итоге должно получиться?