Как стать автором
Обновить
7
0
Якубовский Дмитрий @iCubeDm

Software Engineer

Отправить сообщение

Как ускорить сборку с Maven

Время на прочтение3 мин
Количество просмотров31K
Maven
Что делать, если сборка (build) с Maven проходит слишком медленно? Ведь когда сборка длится слишком долго, любой, даже самый терпеливый разработчик, может заскучать и отвлечься.

Для быстрого поиска в Google или для закладок, сразу предлагаю итоговое решение:
mvn package -am -o -Dmaven.test.skip -T 1C

— для сборки проекта без тестов.
Читать дальше →
Всего голосов 23: ↑23 и ↓0+23
Комментарии40

NVIDIA представила новую архитектуру Pascal, ориентированную на искусственный интеллект

Время на прочтение4 мин
Количество просмотров23K


Прямо сейчас в Кремниевой долине проходит GPU Technology Conference. Это важнейшее событие для всех тех, кто занимается технологиями параллельных вычислений, нейронными сетями и искусственным интеллектом. Текущий 2016 год особенный для этой конференции. То к чему готовились и шли долгое время именно сейчас приобретает законченные формы. Причем, как и предопределено развитием технологий, прорыв происходит сразу по всем направлениям:
  • нейронные сети, построенные на обучении с подкреплением, берут следующую высоту после шахмат и побеждают человека в го, игру, которая превосходит шахматы по своей комбинаторной сложности;
  • беспилотные автомобили проходят проверку на дорогах и доказывают свою состоятельность;
  • платформы искусственного интеллекта от IBM, Amazon, Google и Microsoft готовы для интеграции в реальный мир;
  • виртуальная и дополненная реальность уже реализованы и готовы к масштабному внедрению от Oculus, HTC, Sony и Samsung;
  • решения на базе HPC (High Performance Computing) интегрируются практически повсеместно.

Пожалуй, главный из участников прорыва — это компания NVIDIA. Именно на ее железе работает большая часть всех революционных чудес.

Вчера NVIDIA провела презентацию, показала оборудование и озвучила идеи, которые будут определять ход компьютерной революции как минимум ближайший год. Наверняка об этом будет много новостей и обзоров. Мне довелось присутствовать на этом мероприятии, пересказывать его полностью я не буду, но попробую отметить те детали, которые особенно отложились в памяти.
Читать дальше →
Всего голосов 32: ↑28 и ↓4+24
Комментарии107

Bся моя военная научная карьера — это был бег на месте

Время на прочтение9 мин
Количество просмотров20K
Система сложилась к середине 1980-х. Ее нарекли системой слежения за внешнеполитической обстановкой и угрозой ядерного нападения «Сплав». К 1990 г. она могла перерабатывать громадные потоки информации, которые стекались по всем линиям работы разведки – спутниковой, радиотехнической, внешней агентурной. Учитывалось даже то, какие окна горят в Пентагоне поздно вечером. Одной из проверок «Сплава» стало предсказание начала операции США против иракских войск в Кувейте в начале 1991 г.

«Тогда мы никак не могли определиться с датой. И вдруг одного из сотрудников осенило: Господи, да жена президента Буша, как и его сподвижники, помешана на астрологии! Совсем как гитлеровская верхушка. Стало быть, они станут выбирать время удара, сообразуясь с астрологическими прогнозами, – вспоминает Владимир Кравченко. – Мы тут же заложили в систему еще и гороскопы – и получили время для часа Икс. Мы ошиблись всего на два часа...»
(авторы проекта Сплав)
Читать дальше →
Всего голосов 40: ↑34 и ↓6+28
Комментарии11

Python на Хабре

Время на прочтение7 мин
Количество просмотров451K
Некоторое время назад, в силу определенных причин, мне пришла в голову мысль о том, чтобы начать изучать какой-нибудь новый язык программирования. В качестве альтернатив для этого начинания я определил два языка: Java и Python. После продолжительного метания между ними и сопутствующих нытья и долбежки головой о стену (у меня с новыми языками всегда так — сомнения, раздумья, проблема выбора и т.д.), я все-таки остановился на Python. Окей, выбор сделан. Что дальше? А дальше я стал искать материал для изучения…
Читать дальше →
Всего голосов 182: ↑162 и ↓20+142
Комментарии65

Логика мышления. Промежуточный итог

Время на прочтение3 мин
Количество просмотров29K


Итак, на сегодня в сеть выложены 17 статей из цикла «Логика мышления». Сам цикл – это попытка построить достаточно полную модель работы мозга. То есть, не просто описать отдельные механизмы, но и показать, как из их взаимодействия может рождаться человеческое мышление. То, что уже опубликовано – это фундамент излагаемой концепции. В нем показывается, как на уровне нейронов реализуются основные информационные механизмы. Этот фундамент определенным образом задает правила всей дальнейшей игры. Он определяет, каким инструментарием мы располагаем для реализации более сложных процессов. Я постарался показать, что, оставаясь в рамках биологически достоверных идей, можно создать модель, обладающую высокими вычислительными возможностями. Как пример было показано соответствие между свойствами коры и возможностями реляционной алгебры.
Читать дальше →
Всего голосов 68: ↑58 и ↓10+48
Комментарии54

Логика мышления. Часть 17. Реляционная модель данных

Время на прочтение4 мин
Количество просмотров44K


Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части.

В 1970 году Эдгар Кодд опубликовал статью (Codd, 1970), в которой описал основы реляционной модели хранения данных. Практической реализацией этой модели стали все современные реляционные базы данных. Формализация модели привела к созданию реляционного исчисления и реляционной алгебры.

Основной элемент реляционной модели – это кортеж. Кортеж – это упорядоченный набор элементов, каждый из которых принадлежит определенному множеству или, иначе говоря, имеет свой тип. Совокупность однородных по структуре кортежей образует отношение.

Читать дальше →
Всего голосов 44: ↑39 и ↓5+34
Комментарии6

Логика мышления. Часть 16. Пакетное представление информации

Время на прочтение10 мин
Количество просмотров18K


Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части.

Информация, которой оперирует мозг, должна, с одной стороны, достаточно полно описывать происходящее, с другой стороны, должна храниться так, чтобы допускать выполнение над собой требуемых мозгу операций. В принципе, формат описания информации и алгоритмы ее обработки – вещи тесно связанные между собой. Первое во многом определяет второе. Поэтому говоря о том, как могут быть организованы данные, хранимые мозгом, мы, хотим того или нет, во многом предопределяем систему последующих мыслительных процессов. Так как разговор о принципах мышления нам предстоит позже, то сейчас мы сделаем акцент только на том, как обеспечить полноту текущего описания и последующего хранения информации. При этом подразумевая, что если, дойдя до мышления, окажется, что выбранный нами формат данных подошел под требуемые алгоритмы, то значит, нам повезло и мы пошли по правильному пути.

Чтобы понять, какой формат описаний использует мозг, проследим последовательность зрительного восприятия. Разглядывая изображение, мы «сканируем» его быстрыми движениями глаз, называемыми саккадами (рисунок на КДПВ). Каждая из них помещает в центр зрения один из фрагментов общей картины. На зонах зрительной коры возникают описания, соответствующие тому, что мы видим в этот момент в центре, что видит периферия и каково смещение в результате только что проделанной саккады. Каждая следующая саккада порождает новую картину. Эти описания сменяют друг друга одно за другим.

Читать дальше →
Всего голосов 37: ↑30 и ↓7+23
Комментарии19

Логика мышления. Часть 15. Консолидация памяти

Время на прочтение16 мин
Количество просмотров35K


Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части.

Попробуем представить информационную емкость мозга. Так как в основе памяти лежат нейроны, то для начала уточним, с каким количеством нейронов мы имеем дело. Наиболее точная оценка на сегодня, принадлежит Сюзанне Херкулано-Хузель (Frederico A.C. Azevedo, Ludmila R.B. Carvalho, Lea T. Grinberg, José Marcelo Farfel, Renata E.L. Ferretti, Renata E.P. Leite, Wilson Jacob Filho, Roberto Lent, Suzana Herculano-Houzel, 2009). По этой оценке на кору приходится 82% общей массы мозга и 19% от общего числа нейронов (рисунок ниже). По этой оценке кора состоит из порядка 16 миллиардов нейронов (1.6x1010).

Читать дальше →
Всего голосов 42: ↑34 и ↓8+26
Комментарии38

Логика мышления. Часть 14. Гиппокамп

Время на прочтение7 мин
Количество просмотров36K


Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части.

Полное удаление гиппокампа делает невозможным формирование новых воспоминаний, что убедительно продемонстрировал случай с пациентом H.M. Нарушения в работе гиппокампа могут привести к синдрому Корсакова, который так же сводится к невозможности фиксировать текущие события, при сохранении старой памяти. Все это убеждает в том, что гиппокамп играет ключевую роль в механизме памяти.

Традиционные теории о роли гиппокампа строятся на аналогии мозга и компьютера. В таких рассуждениях гиппокампу отводится роль «оперативной памяти», то есть места, где накапливаются новые воспоминания. Затем же, предположительно во сне, эти воспоминания переносятся в области мозга, ответственные за хранение долговременной памяти. И хотя механизмы такого переноса непонятны, но, по крайней мере, это позволяет объяснить, почему нарушение работы гиппокампа блокирует формирование событийной памяти.

Наша модель принципиально отличается от моделей традиционных. У нас не происходит никакой буферизации памяти в гиппокампе и последующего ее копирования. Элементы, образующие воспоминания, сразу формируются там, где им уместно находиться. Гиппокамп же при этом просто создает единый идентификатор, который объединяет распределенные по пространству коры элементы памяти. Волновая модель работы мозга объясняет, как этот идентификатор распространяется по всей коре. Наличие такого идентификатора позволяет, выбрав объединенные им элементы, воспроизвести не абстрактную картину, а конкретный образ запомненного события.

Читать дальше →
Всего голосов 47: ↑40 и ↓7+33
Комментарии40

Логика мышления. Часть 13. Ассоциативная память

Время на прочтение8 мин
Количество просмотров30K


Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части.

В предыдущей части мы показали как может выглядеть распределенная память. Основная идея заключается в том, что общий волновой идентификатор может объединить нейроны, которые своей активностью формируют запоминаемую картину. Чтобы воспроизвести конкретное событие достаточно запустить по коре соответствующий идентификатор воспоминания. Его распространение восстановит ту же картину активности, что была на коре на момент фиксации этого воспоминания. Но главный вопрос — это как нам получить требуемый идентификатор? Ассоциативность памяти подразумевает, что по набору признаков мы можем отобрать события, в описании которых присутствовали эти признаки. То есть должен существовать нейронный механизм, который позволит по описанию в определенных признаках, получить идентификатор подходящего под эти признаки воспоминания.

Когда мы говорили о распространении нейронных волн, мы исходили из того, что нейрон хранит на внесинаптической мембране те волновые картины, участником которых он является. Встретив знакомую картину, нейрон своим спайком создает продолжение уникального узора. И тут важно, что нейрон не просто в состоянии узнать волновую картину, а то, что он сам – часть распространяющегося узора. Только будучи сам частью уникальной волны нейрон способен участвовать в ее распространении.

Читать дальше →
Всего голосов 48: ↑37 и ↓11+26
Комментарии16

Логика мышления. Часть 12. Следы памяти

Время на прочтение14 мин
Количество просмотров47K


Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части.

Энграммой называют те изменения, что происходят с мозгом в момент запоминания. Другими словами, энграмма – это след памяти. Вполне естественно, что понимание природы энграмм воспринимается всеми исследователями как ключевая задача в изучении природы мышления.

В чем сложность этой задачи? Если взять обычную книгу или внешний компьютерный накопитель, то и то и другое можно назвать памятью. И то и другое хранит информацию. Но мало хранить. Чтобы информация стала полезной, надо уметь ее считывать и знать, как ей оперировать. И тут оказывается, что сама форма хранения информации тесно связана с принципами ее обработки. Одно во многом определяет другое.
Читать дальше →
Всего голосов 49: ↑42 и ↓7+35
Комментарии26

Логика мышления. Часть 11. Динамические нейронные сети. Ассоциативность

Время на прочтение7 мин
Количество просмотров43K


Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части.

Наиболее просты для понимания и моделирования нейронные сети, в которых информация последовательно распространяется от слоя к слою. Подав сигнал на вход, можно так же последовательно рассчитать состояние каждого из слоев. Эти состояния можно трактовать как набор описаний входного сигнала. Пока не изменится входной сигнал, останется неизменным и его описание.

Более сложная ситуация возникает, если ввести в нейронную сеть обратные связи. Чтобы рассчитать состояние такой сети, уже недостаточно одного прохода. Как только мы изменим состояние сети в соответствии с входным сигналом, обратные связи изменят входную картину, что потребует нового пересчета состояния всей сети, и так далее.

Идеология рекуррентной сети зависит от того, как соотносится задержка обратной связи и интервал смены образов. Если задержка много меньше интервала смены, то нас, скорее всего, интересуют только конечные равновесные состояния, и промежуточные итерации стоит воспринимать, как исключительно расчетную процедуру. Если же они сопоставимы, то на первый план выходит именно динамика сети.
Читать дальше →
Всего голосов 37: ↑34 и ↓3+31
Комментарии6

Высокоточная активная управляемая копия тела человека. Концепция прототипирования системы искусственного механостата

Время на прочтение7 мин
Количество просмотров35K


«Человек, как предмет познания — это ключ ко всей науке о природе»
Тейяр Де Шарден
«На перевале всегда дует свежий ветер»
Народная мудрость
«Я двигаюсь туда, куда прилетит шайба, а не туда, где она находится сейчас…»
Уэйн Грецки

Часть первая. Описательная


Атлетическое сложение, быстрые, точные движения захватывают взгляд, красивые и сильные руки легко и просто манипулируют хирургическими инструментами – так нам видятся тестовые испытания модели тела человека, робота-аватара, созданного новыми технологиями из множества современных полимерных материалов. Жизнь в тело искусственного атлета вдыхает энергия графеновых батарей, его нервы – оптически активные метаматериалы, мысль — высококогерентное излучение, его мозг – нейронная сеть оптических процессоров…
Нет, сынок, это фантастика...
Всего голосов 30: ↑25 и ↓5+20
Комментарии29

Логика мышления. Часть 9. Паттерны нейронов-детекторов. Обратная проекция

Время на прочтение8 мин
Количество просмотров22K


Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части.

Продолжим разговор о нейронах-детекторах. Предположим, на зону коры посредством волновых туннелей проецируется некая информация. Каждый из проекционных пучков – это аксоны нейронов, расположенных на той зоне, которая эту информацию посылает. Проекция снимается с малого по площади участка коры. Волокна проекционного пучка, по сути, транслируют проходящие по этому участку волновые картины. То место принимающей коры, куда приходится проекция, само становится источником волн. Эти волны несут на принимающей зоне коры ту же информацию, что и волны на исходной зоне.

Если мы настроим веса какого-либо нейрона на узнавание определенного волнового узора, проходящего по его рецептивному полю, то мы превратим его в детектор, срабатывающий в тот момент, когда появляется характерное для него сочетание идентификаторов.

Если мы обучим несколько расположенных в относительной близости друг от друга нейронов детектировать одну и ту же волновую картину, то мы получим уже не одиночный нейрон-детектор, а детекторный паттерн. Реакция одного нейрона-детектора на характерный стимул – пакет импульсов вызванной активности. Реакция детекторного паттерна – это вызванная активность группы нейронов, образующих определенный узор. Естественно, что такой паттерн вызванной активности начнет обучать кору на распространение своего уникального идентификатора.

Читать дальше →
Всего голосов 33: ↑28 и ↓5+23
Комментарии16

Логика мышления. Часть 8. Выделение факторов в волновых сетях

Время на прочтение11 мин
Количество просмотров39K


В предыдущих частях мы описали модель нейронной сети, которую назвали волновой. Наша модель существенно отличается от традиционных волновых моделей. Обычно исходят из того, что каждому нейрону свойственны собственные осцилляции. Совместная работа таких склонных к систематической пульсации нейронов, приводит в классических моделях к определенной общей синхронизации и появлению глобальных ритмов. Мы вкладываем в волновую активность коры совсем другой смысл. Мы показали, что нейроны способны фиксировать информацию не только за счет изменения чувствительности своих синапсов, но и благодаря изменениям в мембранных рецепторах, расположенных вне синапсов. В результате этого нейрон приобретает способность реагировать на большой набор определенных паттернов активности окружающих его нейронов. Мы показали, что срабатывание нескольких нейронов, образующих определенный узор, обязательно запускает волну, распространяющуюся по коре. Такая волна это не просто возмущение, передающееся от нейрона к нейрону, а сигнал создающий по мере продвижения определенный узор активности нейронов, уникальный для каждого излучившего его паттерна. Это означает, что в любом месте коры по тому узору, что принесла с собой волна, можно определить какие паттерны на коре пришли в активность. Мы показали, что через небольшие пучки волокон волновые сигналы могут проецироваться на другие зоны коры. Сейчас мы поговорим о том как может происходить синаптическое обучение нейронов в наших волновых сетях.
Читать дальше →
Всего голосов 30: ↑23 и ↓7+16
Комментарии9

Логика мышления. Часть 7. Интерфейс человек-компьютер

Время на прочтение7 мин
Количество просмотров49K


Для тех, кто только присоединился, я советую начать с первой части или хотя бы с описания волновой модели коры. Наша волновая модель показывает как вызванная активность нейронов коры порождает волны фоновой активности, распространяющиеся как внутри зон коры, так и через проекционные связи по всему пространству мозга. Проходя по какому-либо участку коры, волна, кодирующая определенное явление, воспроизводит свой уникальный узор. Это позволяет нейронам в любом месте коры получать информацию о том, что происходит в других частях мозга.
Читать дальше →
Всего голосов 43: ↑32 и ↓11+21
Комментарии8

Логика мышления. Часть 3. Персептрон, сверточные сети

Время на прочтение8 мин
Количество просмотров124K


В первой части мы описали свойства нейронов. Во второй говорили об основных свойствах, связанных с их обучением. Уже в следующей части мы перейдем к описанию того как работает реальный мозг. Но перед этим нам надо сделать последнее усилие и воспринять еще немного теории. Сейчас это скорее всего покажется не особо интересным. Пожалуй, я и сам бы заминусовал такой учебный пост. Но вся эта «азбука» сильно поможет нам разобраться в дальнейшем.

Персептрон


В машинном обучении разделяют два основных подхода: обучение с учителем и обучение без учителя. Описанные ранее методы выделения главных компонент – это обучение без учителя. Нейронная сеть не получает никаких пояснений к тому, что подается ей на вход. Она просто выделяет те статистические закономерности, что присутствуют во входном потоке данных. В отличие от этого обучение с учителем предполагает, что для части входных образов, называемых обучающей выборкой, нам известно, какой выходной результат мы хотим получить. Соответственно, задача – так настроить нейронную сеть, чтобы уловить закономерности, которые связывают входные и выходные данные.
Читать дальше →
Всего голосов 62: ↑54 и ↓8+46
Комментарии20

Информация

В рейтинге
Не участвует
Откуда
Berlin, Berlin, Германия
Дата рождения
Зарегистрирован
Активность