• Автоэнкодеры в Keras, Часть 1: Введение

    • Tutorial

    Содержание



    Во время погружения в Deep Learning зацепила меня тема автоэнкодеров, особенно с точки зрения генерации новых объектов. Стремясь улучшить качество генерации, читал различные блоги и литературу на тему генеративных подходов. В результате набравшийся опыт решил облечь в небольшую серию статей, в которой постарался кратко и с примерами описать все те проблемные места с которыми сталкивался сам, заодно вводя в синтаксис Keras.

    Автоэнкодеры


    Автоэнкодеры — это нейронные сети прямого распространения, которые восстанавливают входной сигнал на выходе. Внутри у них имеется скрытый слой, который представляет собой код, описывающий модель. Автоэнкодеры конструируются таким образом, чтобы не иметь возможность точно скопировать вход на выходе. Обычно их ограничивают в размерности кода (он меньше, чем размерность сигнала) или штрафуют за активации в коде. Входной сигнал восстанавливается с ошибками из-за потерь при кодировании, но, чтобы их минимизировать, сеть вынуждена учиться отбирать наиболее важные признаки.



    Кому интересно, добро пожаловать под кат
    Читать дальше →
  • 50 оттенков matplotlib — The Master Plots (с полным кодом на Python)

    • Перевод
    Те, кто работает с данными, отлично знают, что не в нейросетке счастье — а в том, как правильно обработать данные. Но чтобы их обработать, необходимо сначала проанализировать корреляции, выбрать нужные данные, выкинуть ненужные и так далее. Для подобных целей часто используется визуализация с помощью библиотеки matplotlib.



    Встретимся «внутри»!
    Читать дальше →
  • ООП, «святая троица» и SOLID: некоторый минимум знаний о них

      Необходимое вступление


      Я не гарантирую, что изложенные здесь трактовки общепринятых терминов и принципов совпадают с тем, что изложили в солидных научных статьях калифорнийские профессора во второй половине прошлого века. Я не гарантирую, что мои трактовки полностью разделялись или разделяются большинством IT-профессионалов в отрасли или научной среде. Я даже не гарантирую, что мои трактовки помогут вам на собеседовании, хоть и предполагаю, что будут небесполезны.


      Но я гарантирую, что если отсутствие всякого понимания заменить моими трактовками и начать их применять, то код вами написанный будет проще сопровождать и изменять. Так же я прекрасно понимаю, что в комментариях мной написанное будут яростно дополнять, что позволит выправить совсем уж вопиющие упущения и нестыковки.


      Столь малые гарантии поднимают вопросы о причинах, по которым статья пишется. Я считаю, что этим вещам должны учить везде, где учат программированию, вплоть до уроков информатики в школах с углублённым её изучением. Тем не менее, для меня стала пугающе нормальной ситуация, когда я узнаю, что собеседник мой коллега, причём работающий уже не первый год, но про инкапсуляцию «что-то там слышал». Необходимость собрать всё это в одном месте и давать ссылку при возникновении вопросов зрела давно. А тут ещё и мой «pet-project» дал мне изрядно пищи для размышлений.


      Тут мне могут возразить, что учить эти вещи в школе рановато, и вообще на ООП свет клином не сошёлся. Во-первых, это смотря как учить. Во-вторых, 70% материала этой статьи применимо не только к ООП. Что я буду отмечать отдельно.



      Читать дальше →
    • Синтаксический разбор предложения русского языка

      В данной статье описывается процесс синтаксического анализа предложения русского языка с использованием контекстно-свободной грамматики и алгоритма LR-анализа.

      Обработка естественного языка — общее направление искусственного интеллекта и математической лингвистики. Оно изучает проблемы компьютерного анализа и синтеза естественных языков.

      В общем, процесс анализа предложения естественного языка выглядит следующим образом: (1) разбиение предложения на синтаксические единицы — слова и словосочетания; (2) определение грамматических параметров каждой единицы; (3) определение синтаксической связи между единицами. На выходе — абстрактное дерево разбора.
      Читать дальше →
    • Автоматическое определение эмоций в текстовых беседах с использованием нейронных сетей


        Одна из основных задач диалоговых систем состоит не только в предоставлении нужной пользователю информации, но и в генерации как можно более человеческих ответов. А распознание эмоций собеседника — уже не просто крутая фича, это жизненная необходимость. В этой статье мы рассмотрим архитектуру рекуррентной нейросети для определения эмоций в текстовых беседах, которая принимала участие в SemEval-2019 Task 3 “EmoContext”, ежегодном соревновании по компьютерной лингвистике. Задача состояла в классификации эмоций (“happy”, “sad”, “angry” и “others”) в беседе из трех реплик, в которой участвовали чат-бот и человек.

        В первой части статьи мы рассмотрим поставленную в EmoContext задачу и предоставленные организаторами данные. Во второй и третьей частях разберём предварительную обработку текста и способы векторного представления слов. В четвёртой части мы опишем архитектуру LSTM, которую мы использовали в соревновании. Код написан на языке Python с использованием библиотеки Keras.
        Читать дальше →
        • +46
        • 7,7k
        • 8
      • Краткое введение в цепи Маркова

        • Перевод
        image

        В 1998 году Лоуренс Пейдж, Сергей Брин, Раджив Мотвани и Терри Виноград опубликовали статью «The PageRank Citation Ranking: Bringing Order to the Web», в которой описали знаменитый теперь алгоритм PageRank, ставший фундаментом Google. Спустя чуть менее двух десятков лет Google стал гигантом, и даже несмотря на то, что его алгоритм сильно эволюционировал, PageRank по-прежнему является «символом» алгоритмов ранжирования Google (хотя только немногие люди могут действительно сказать, какой вес он сегодня занимает в алгоритме).

        С теоретической точки зрения интересно заметить, что одна из стандартных интерпретаций алгоритма PageRank основывается на простом, но фундаментальном понятии цепей Маркова. Из статьи мы увидим, что цепи Маркова — это мощные инструменты стохастического моделирования, которые могут быть полезны любому эксперту по аналитическим данным (data scientist). В частности, мы ответим на такие базовые вопросы: что такое цепи Маркова, какими хорошими свойствами они обладают, и что с их помощью можно делать?
        Читать дальше →
      • Автополив цветов с удаленным управлением

        Сегодня речь пойдет о домашней автоматизации, приятно ведь отдыхая где нибудь в теплом и красивом месте следить за тем как поливаются твои цветы. Это вторая система в моей квартире, первая поливает домашних животных, а в этой я уже исправил все недочеты первой итерации.

        image

        Концепт


        При проектировании системы я отталкивался от следующих принципов:

        1. Дешево и сердито — я не хочу тратить много средств на систему, которая поливает 15 недорогих цветков. У меня не оранжерея.
        2. Автономность — она должна работать сама по расписанию, но это не исключает наличие ручного управления.
        3. Удобство — настройка полива происходит при помощи смартфона. Панельки это удобно, но не в этом случае.
        4. Гибкость — цветы в основном все разные с разными кашпо, поэтому поливать их необходимо с разной периодичностью и разным количеством воды.
        5. Удаленность — управлять можно с любой точки планеты, где есть интернет и смартфон.
        Читать дальше →
      • Подборка датасетов для машинного обучения

          Привет, читатель!

          Перед тобой статья-путеводитель по открытым наборам данных для машинного обучения. В ней я, для начала, соберу подборку интересных и свежих (относительно) датасетов. А бонусом, в конце статьи, прикреплю полезные ссылки по самостоятельному поиску датасетов.

          Меньше слов, больше данных.

          image

          Подборка датасетов для машинного обучения:


          Читать дальше →
          • +62
          • 26,5k
          • 4
        • Ищем свободное парковочное место с Python

          • Перевод
          image

          Я живу в хорошем городе. Но, как и во многих других, поиск парковочного места всегда превращается в испытание. Свободные места быстро занимают, и даже если у вас есть своё собственное, друзьям будет сложно к вам заехать, ведь им будет негде припарковаться.

          Поэтому я решил направить камеру в окно и использовать глубокое обучение, чтобы мой компьютер сообщал мне, когда освободится место:

          image

          Это может звучать сложно, но на самом деле написать рабочий прототип с глубоким обучением — быстро и легко. Все нужные составляющие уже есть — нужно всего лишь знать, где их найти и как собрать воедино.

          Поэтому давайте немного развлечёмся и напишем точную систему уведомлений о свободной парковке с помощью Python и глубокого обучения
          Читать дальше →
        • Огромный открытый датасет русской речи

            image

            Специалистам по распознаванию речи давно не хватало большого открытого корпуса устной русской речи, поэтому только крупные компании могли позволить себе заниматься этой задачей, но они не спешили делиться своими наработками.

            Мы торопимся исправить это годами длящееся недоразумение.

            Итак, мы предлагаем вашему вниманию набор данных из 4000 часов аннотированной устной речи, собранный из различных интернет-источников.

            Подробности под катом.
            Читать дальше →
          • Основы Natural Language Processing для текста

            • Перевод
            Обработка естественного языка сейчас не используются разве что в совсем консервативных отраслях. В большинстве технологических решений распознавание и обработка «человеческих» языков давно внедрена: именно поэтому обычный IVR с жестко заданными опциями ответов постепенно уходит в прошлое, чатботы начинают все адекватнее общаться без участия живого оператора, фильтры в почте работают на ура и т.д. Как же происходит распознавание записанной речи, то есть текста? А вернее будет спросить, что лежит в основе соврменных техник распознавания и обработки? На это хорошо отвечает наш сегодняшний адаптированный перевод – под катом вас ждет лонгрид, который закроет пробелы по основам NLP. Приятного чтения!


            Читать дальше →
            • +29
            • 21,7k
            • 4
          • Бот для Starcraft на Rust, C и на любом другом языке

              StarCraft: Brood War. Как много это значит для меня. И для многих из вас. Настолько много, что я засомневался, давать ли ссылку на вики.


              Как-то раз мне в личку постучался Halt и предложил выучить Rust. Как и любые нормальные люди, мы решили начать с hello world написания динамической библиотеки под Windows, которая могла бы загружаться в адресное пространство игры StarCraft и управлять юнитами.


              В статье будет описан процесс поиска решений, использования технологий, приемов, которые позволят вам почерпнуть новое в языке Rust и его экосистеме или вдохновиться для реализации бота на своем любимом языке, будь то C, C++, ruby, python, e.t.c.

              Ready to roll out!
            • Шпаргалка по шаблонам проектирования


                Перевод pdf файла с сайта http://www.mcdonaldland.info/ с описанием 23-х шаблонов проектирования GOF. Каждый пункт содержит [очень] короткое описание паттерна и UML-диаграмму. Сама шпаргалка доступна в pdf, в виде двух png файлов (как в оригинале), и в виде 23-х отдельных частей изображений. Для самых нетерпеливых — все файлы в конце статьи.

                Под катом — много картинок.

                Читать дальше →
              • Знай сложности алгоритмов

                • Перевод
                Эта статья рассказывает о времени выполнения и о расходе памяти большинства алгоритмов используемых в информатике. В прошлом, когда я готовился к прохождению собеседования я потратил много времени исследуя интернет для поиска информации о лучшем, среднем и худшем случае работы алгоритмов поиска и сортировки, чтобы заданный вопрос на собеседовании не поставил меня в тупик. За последние несколько лет я проходил интервью в нескольких стартапах из Силиконовой долины, а также в некоторых крупных компаниях таких как Yahoo, eBay, LinkedIn и Google и каждый раз, когда я готовился к интервью, я подумал: «Почему никто не создал хорошую шпаргалку по асимптотической сложности алгоритмов? ». Чтобы сохранить ваше время я создал такую шпаргалку. Наслаждайтесь!
                Читать дальше →
              • Audio AI: выделяем вокал из музыки с помощью свёрточных нейросетей

                • Перевод
                Взлом музыки для демократизации производного контента

                Отказ от ответственности: вся интеллектуальная собственность, проекты и методы, описанные в этой статье, раскрыты в патентах US10014002B2 и US9842609B2.

                Вот бы вернуться в 1965 год, постучать в парадную дверь студии «Эбби-Роуд» с пропуском, зайти внутрь — и услышать настоящие голоса Леннона и Маккартни… Что ж, давайте попробуем. Входные данные: MP3 среднего качества песни «Битлз» We Can Work it Out. Верхняя дорожка — входной микс, нижняя дорожка — изолированный вокал, который выделила наша нейросеть.

                Читать дальше →
              • Обширный обзор собеседований по Python. Советы и подсказки

                Всем привет!


                Кратко о себе. По образованию я математик, а вот по профессии — программист. В сфере разработки с 2006 года. Хотя, поскольку программирование начали изучать ещё в школе, свои первые программки и игры я начал писать ещё в школе (примерно, с 2003). Так сложилось, что пришлось выучить и поработать на нескольких языках. Если не брать во внимание ВУЗ-овские лекции по С, С++, Бэйсику, Паскалю и Фортрану, то реально я работал с Delphi (более 6 лет), PHP (более 5 лет), Embedded (Atmel + PIC около 2.5 лет) и последним временем Python + чуть-чуть Scala. Конечно же без баз данных тоже никак не обойтись.


                Для кого эта статья? Для всех, кто, как и я, хотел (или хочет) найти для себя достойную хорошо оплачиваемую работу с интересным проектом, классным коллективом и всякими плюшками. А также для тех, кто желает поднять свой уровень знаний и мастерства.

                Читать дальше →
              • Как создать игровой ИИ: гайд для начинающих

                • Перевод


                Наткнулся на интересный материал об искусственном интеллекте в играх. С объяснением базовых вещей про ИИ на простых примерах, а еще внутри много полезных инструментов и методов для его удобной разработки и проектирования. Как, где и когда их использовать — тоже есть.

                Большинство примеров написаны в псевдокоде, поэтому глубокие знания программирования не потребуются. Под катом 35 листов текста с картинками и гифками, так что приготовьтесь.

                UPD. Извиняюсь, но собственный перевод этой статьи на Хабре уже делал PatientZero. Прочитать его вариант можно здесь, но почему-то статья прошла мимо меня (поиском пользовался, но что-то пошло не так). А так как пишу в блог, посвященный геймдеву, решил оставить свой вариант перевода для подписчиков (некоторые моменты у меня оформлены по-другому, некоторые — намеренно пропущены по совету разработчиков).
                Читать дальше →
              • Новая реализация любопытства у ИИ. Обучение с вознаграждением, которое зависит от сложности предсказать результат выдачи

                • Перевод

                Прогресс в игре «Месть Монтесумы» многими рассматривался как синоним достижений в области исследования незнакомой среды

                Мы разработали метод случайной дистилляции сети (Random Network Distillation, RND) на основе прогнозирования, который поощряет агентов обучения с подкреплением исследовать окружение благодаря любопытству. Этот метод впервые превысил средние результаты человека в компьютерной игре «Месть Монтесумы» (если не считать анонимную заявку в ICLR, где результат хуже нашего). RND демонстрирует ультрасовременную эффективность, периодически находит все 24 комнаты и проходит первый уровень без предварительной демонстрации и не имея доступ к базовому состоянию игры.
                Читать дальше →
              • Может ли искусственный интеллект оставить букмекеров без работы?

                  «Победа искусственного интеллекта над футбольными экспертами» – таким мог стать заголовок этой статьи про результаты футбольного соревнования. Мог бы, но, увы, не стал.

                  Во время Чемпионата мира по футболу у нас в компании "НОРБИТ" проходил конкурс на лучший прогноз матчей по футболу. Я слишком поверхностно разбираюсь в футболе, чтобы на что-то претендовать, но желание принять участие в конкурсе все-таки победило мою лень. Под катом – история о том, как благодаря машинному обучению мне удалось добиться неплохих результатов среди знатоков футбольных команд. Правда, сорвать куш мне не удалось, зато открыл для себя новый увлекательный мир Data Science.

                  Читать дальше →
                • Как правильно «фармить» Kaggle

                    image
                    *фарм — (от англ. farming) — долгое и занудное повторение определенных игровых действий с определенной целью (получение опыта, добыча ресурсов и др.).


                    Введение


                    Недавно (1 октября) стартовала новая сессия прекрасного курса по DS/ML (очень рекомендую в качестве начального курса всем, кто хочет, как это теперь называется, "войти" в DS). И, как обычно, после окончания любого курса у выпускников возникает вопрос — а где теперь получить практический опыт, чтобы закрепить пока еще сырые теоретические знания. Если вы зададите этот вопрос на любом профильном форуме, то ответ, скорее всего, будет один — иди решай Kaggle. Kaggle — это да, но с чего начать и как наиболее эффективно использовать эту платформу для прокачки практических навыков? В данной статье автор постарается на своем опыте дать ответы на эти вопросы, а также описать расположение основных грабель на поле соревновательного DS, чтобы ускорить процесс прокачки и получать от этого фан.

                    проверить глубину этой кроличьей норы