Нейронные сети все прочнее входят в нашу жизнь. В последнее время особую значимость приобретают исследования, связанные с обучением искусственных нейронных сетей в сфере анализа естественного языка (NLP, NLU) для создания реалистичных, человечных разговорных «скиллов». Одним из первых примеров «человечных» диалоговых решений стала Xiaoice от Microsoft, которая обладала навыками дружелюбности. Позже такие компании как Яндекс, Google [1], Mail.ru и другие выпустили на рынок своих голосовых помощников. Однако все они столкнулись с фундаментальной проблемой: их решения хорошо выполняют запросы пользователей, связанные с четкими командами («расскажи новости»), но совершенно не обладают человечными способностями, качествами характера, эмуляцией чувств, эмпатией и поэтому не способны поддерживать человеческий разговор на различные темы. При этом «видимость человечности» часто обеспечивается набором шаблонных фраз и шуток, подходящих практически в любой ситуации (неспецифичных контексту разговора).
В этой статье мы покажем, как устроен и как работает разработанный нами умный Ранжировщик ответов для нейросеток Трансформер и какой эффект он оказывает на качество разговора любых генеративных чатботов.