На первый взгляд может показаться, что ничего интересного в области RecSys не происходит и там всё давно решено: собираем взаимодействия пользователей и товаров, закидываем в какую-нибудь библиотеку, которая реализует коллаборативную фильтрацию, и рекомендации готовы. В то же время практически все остальные разделы машинного обучения перешли (NLP, CV, Speech) или экспериментируют (TimeSeries, Tabular ML) c нейросетевыми моделями на базе трансформеров. На самом деле, рекомендательные системы — не исключение, и исследования по применению трансформеров ведутся уже достаточно давно.
Мы в команде ранжирования и рекомендаций, стараемся не отставать от последних достижений в области RecSys. Меня зовут Дима, я Data Scientist в Циан, и сегодня хочу поделиться нашим опытом использования мультимодальных трансформеров для content-based рекомендаций.