Обновить
2
0
Александр Мещеряков@rolling_meaning

Пользователь

Отправить сообщение

Обработка геоданных для ML-задач. Часть 3: агрегирование данных и оценка пространственных шаблонов

Уровень сложностиПростой
Время на прочтение8 мин
Охват и читатели986

Пространственное агрегирование помогает контролировать степень детализации данных в зависимости от пространственных характеристик отдельных записей. Эта операция может быть полезна, если вы хотите сравнить разные регионы по конкретному параметру, (например, плотность населения или динамика продаж), оценить значение признака на единицу площади (скажем, среднюю выручку магазинов на квадратный километр) или преобразовать набор точек в растровые пространственные данные.

Важно учитывать, что агрегирование упрощает анализ, но «схлопывает» внутреннюю вариативность данных, типа как усреднённая температура по больнице может скрывать локальные перегретые серверные. Существует, по крайней мере, три метода пространственного агрегирования...

Читать далее

Обработка геоданных для ML-задач. Часть 2: пространственные объединения и расстояния

Уровень сложностиПростой
Время на прочтение10 мин
Охват и читатели728

Статья продолжает обсуждение пространственных признаков в Python. Здесь мы рассматриваем пространственные объединения — аналог обычного объединения в мире геоданных, основанный на топологических отношениях между объектами, таких как пересечение, вложение или касание. Также мы узнаем, как правильно рассчитывать различные типы расстояний (и иногда это не просто евклидово расстояние между двумя точками). Например, геодезическое расстояние учитывает кривизну Земли, что особенно важно для анализа данных на больших территориях; расстояние маршрута учитывает направление: оптимальный маршрут от A до B не всегда равен маршруту от B до A. 

Читать далее

Обработка геоданных для ML-задач. Часть 1

Уровень сложностиПростой
Время на прочтение9 мин
Охват и читатели1.3K

Привет, я Александр Мещеряков, более 3-х лет работаю в компании «Синимекс» специалистом по анализу данных. Мне удалось поработать с различными ML-проектами, и больше всего меня увлекла работа с геоданными. Для многих эта тема кажется немного «магией» и я хотел бы на страницах Хабра пролить на нее немного света.

Эта статья — как шпаргалка для шеф-повара: берите готовые рецепты под ваши задачи. Здесь вы найдёте ключевые библиотеки (geopandas, h3-py) и принципы работы с геоданными — от парсинга OpenStreetMap до агрегации по шестиугольникам.

Читать далее

Информация

В рейтинге
Не участвует
Зарегистрирован
Активность

Специализация

Ученый по данным, ML разработчик
Средний
От 250 000 ₽
Анализ данных
Pandas
Математическая статистика
Визуализация
Jupyter Notebook
Научно-исследовательская работа
Python
PostgreSQL
Машинное обучение
Математическое моделирование