Аннотация
Используя нейронную сеть, мы хотим, чтобы транспортное средство управляло собой само, избегая препятствий. Мы добиваемся этого путем выбора соответствующих входов/выходов и тщательного обучения нейронной сети. Мы скармливаем сети расстояния до ближайших препятствий вокруг автомобиля, имитируя зрение водителя-человека. На выходе получаем ускорение и поворот руля транспортного средства. Нам также необходимо обучить сеть на множестве стратегий ввода-вывода. Результат впечатляющий даже с использованием всего лишь нескольких нейронов! Автомобиль ездит, обходя препятствия, но возможно сделать некоторые модификации, чтобы это программное средство справлялось с более специфическими задачами.
Введение
Идея в том, чтобы иметь транспортное средство, которое управляет собой само и избегает препятствий в виртуальном мире. Каждое мгновение оно само решает, как изменить свою скорость и направление в зависимости от окружающей среды. Для того чтобы сделать это более реальным, ИИ должен видеть только то, что видел бы человек, если бы находился за рулем, так что ИИ будет принимать решения только на основе препятствий, которые находятся спереди транспортного средства. Имея реалистичный ввод, ИИ мог бы быть использован в реальном автомобиле и работать так же хорошо.
Когда я слышу фразу: "Управление транспортным средством с помощью ИИ", я сразу же задумываюсь о компьютерных играх. Многие из гоночных игр могут использовать эту технику для контроля транспортных средств, но есть целый ряд других приложений, которые ищут средство управления транспортом в виртуальном или же реальном мире.
Так как же мы это будем делать? Существует множество способов реализации ИИ, но ведь если нам нужен "мозг" для управления транспортным средством, то нейронные сети подойдут как нельзя лучше. Нейронные сети работают так же, как и наш мозг. Они, наверное, и будут правильным выбором. Мы должны определить, что будет входом, а что выходом нашей нейронной сети.