Pull to refresh

Стекинг и блендинг в ML. Ключевые особенности и реализация с нуля на Python

Level of difficultyHard
Reading time11 min
Views4K

Среди всех методов ансамблирования особое внимание заслуживают две очень мощные техники, известные как стекинг (stacked generalization) и блендинг, особенность которых заключается в возможности использования прогнозов не только однородных, но и сразу нескольких разных по природе алгоритмов в качестве обучающих данных для другой модели, на которой будет сделан итоговый прогноз. Например, прогнозы логистической регрессии и градиентного бустинга могут быть использованы для обучения случайного леса, на котором уже будет выполнен итоговый прогноз.

Стекинг и блендинг очень схожи между собой, однако между ними есть существенные различия, заключающиеся в разделении и использовании тренировочных данных. Рассмотрим более подробно как это происходит.

Читать далее
Total votes 7: ↑7 and ↓0+7
Comments0

Методы сбора ансамблей алгоритмов машинного обучения: стекинг, бэггинг, бустинг

Reading time5 min
Views29K

Ансамбль - это просто несколько алгоритмов машинного обучения, собранных в единое целое. Такой подход часто используется для того, чтобы усилить "положительные качества" отдельно взятых алгоритмов, которые сами по себе могут работать слабо, а вот в группе - ансамбле давать хороший результат. При использовании ансамблевых методов алгоритмы учатся одновременно и могут исправлять ошибки друг друга. Типичными примерами методов, направленных на объединение "слабых" учеников в группу сильных являются стекинг, бэггинг, бустинг, которые и будут рассмотрены далее.

Читать далее
Rating0
Comments2

Спортивный анализ данных, или как стать специалистом по data science

Reading time17 min
Views60K
Меня зовут Пётр Ромов, я — data scientist в Yandex Data Factory. В этом посте я предложу сравнительно простой и надежный способ начать карьеру аналитика данных.

Многие из вас наверняка знают или хотя бы слышали про Kaggle. Для тех, кто не слышал: Kaggle — это площадка, на которой компании проводят конкурсы по созданию прогнозирующих моделей. Её популярность столь велика, что часто под «кэглами» специалисты понимают сами конкурсы. Победитель каждого соревнования определяется автоматически — по метрике, которую назначил организатор. Среди прочих, Kaggle в разное время опробовали Facebook, Microsoft и нынешний владелец площадки — Google. Яндекс тоже несколько раз отметился. Как правило, Kaggle-сообществу дают решать задачи, довольно близкие к реальным: это, с одной стороны, делает конкурс интересным, а с другой — продвигает компанию как работодателя с солидными задачами. Впрочем, если вам скажут, что компания-организатор конкурса задействовала в своём сервисе алгоритм одного из победителей, — не верьте. Обычно решения из топа слишком сложны и недостаточно производительны, а погони за тысячными долями значения метрики не настолько и нужны на практике. Поэтому организаторов больше интересуют подходы и идейная часть алгоритмов.



Kaggle — не единственная площадка с соревнованиями по анализу данных. Существуют и другие: DrivenData, DataScience.net, CodaLab. Кроме того, конкурсы проводятся в рамках научных конференций, связанных с машинным обучением: SIGKDD, RecSys, CIKM.

Для успешного решения нужно, с одной стороны, изучить теорию, а с другой — начать практиковать использование различных подходов и моделей. Другими словами, участие в «кэглах» вполне способно сделать из вас аналитика данных. Вопрос — как научиться в них участвовать?
Хардкор
Total votes 71: ↑66 and ↓5+61
Comments13

Массовый стекинг моделей ML в production: реально или нет?

Reading time5 min
Views5.3K
Довольно часто нас спрашивают, почему мы не устраиваем соревнований дата-сайентистов. Дело в том, что по опыту мы знаем: решения в них совсем не применимы к prod. Да и нанимать тех, кто окажется на ведущих местах, не всегда имеет смысл.



Такие соревнования часто выигрывают с помощью так называемого китайского стекинга, когда комбинаторным способом берут все возможные алгоритмы и значения гиперпараметров, и полученные модели в несколько уровней используют сигнал друг от друга. Обычные спутники этих решений — сложность, нестабильность, трудность при отладке и поддержке, очень большая ресурсоёмкость при обучении и прогнозировании, необходимость внимательного надзора человека в каждом цикле повторного обучения моделей. Смысл делать это есть только на соревнованиях — ради десятитысячных в локальных метриках и позиций в турнирной таблице.
Читать дальше →
Total votes 22: ↑18 and ↓4+14
Comments2