• Можно ли запихнуть распознавание номеров в любой тамагочи?

      Про распознавание номеров мы рассказываем на Хабре давным давно. Надеюсь даже интересно. Похоже настало время рассказать как это применяется, зачем это вообще нужно, куда это можно запихнуть. А самое главное — как это изменяется в последние годы с приходом новых алгоритмов машинного зрения.


      Читать дальше →
    • На пути к естественному интеллекту

        Machine Learning с каждым днём становится всё больше. Кажется, что любая компания, у которой есть хотя бы пять сотрудников, хочет себе разработать или купить решение на машинном обучении. Считать овец, считать свёклу, считать покупателей, считать товар. Либо прогнозировать всё то же самое.

        image

        Формула проста: если цена внедрения ниже, чем ты платишь охраннику — ставь управляемый шлагбаум. Потери от бездельников выше стоимости внедрения биометрической системы учёта времени — внедряй. «Эксперт» берёт взятки за контроль качества продукта? Продублируй его системой контроля качества.

        Далеко не всегда можно оценить стоимость разработки. Но зачастую хватает даже порядка, чтобы начать работы и привлечь инвесторов.

        Но статья, скорее, не про это. Статья про специалистов по машинному обучению. Про бум специальности, про то, какие люди начинают приходить, как из единого, общего массива специалистов начинают вырисовываться профессии, про то, как сейчас решать ML-задачи.
        Читать дальше →
      • Умная кормушка: Machine Learning, Raspberry Pi, Telegram, немножко магии обучения + инструкция по сборке

        • Tutorial
        Всё началось с того, что жена захотела повесить кормушку для птиц. Идея мне понравилась, но сразу захотелось оптимизировать. Световой день зимой короткий — сидеть днём и смотреть на кормушку времени нет. Значит нужно больше Computer Vision!



        Идея была простой: прилетает птичка — вжуууух — она оказывается на телефоне. Осталось придумать как это сделать и реализовать.
        В статье:
        • Запуск Caffe на Raspberry Pi B+ (давно хотел это сделать)
        • Построение системы сбора данных
        • Выбор нейронной сети, оптимизация архитектуры, обучение
        • Оборачивание, выбор и приделывание интерфейса

        Все исходники открыты + описан полный порядок развёртывания получившейся конструкции.
        Читать дальше →
      • Google Cloud Vision API‎. Будущее Computer Vision as a service настало?

        • Tutorial
        Год назад Google сваял платформу Cloud Vision API‎. Идея платформы — предоставить технологии Computer Vision, в которых Google является безусловным лидером, как сервис. Пару лет назад под каждую задачу существовала своя технология. Нельзя было взять что-то общее и добиться, чтобы алгоритм решал всё. Но Google замахнулся. Вот, прошёл уже год. А технология всё так же не на слуху. На хабре одна статья. Да и та ещё не про Cloud Vision api, а про Face api, которое было предшественником. Англоязычный интернет тоже не пестрит статьями. Разве что от самого Google. Это провал?



        Мне было интересно посмотреть что это такое ещё весной. Но сил полноценно посидеть не хватало. Изредка что-то отдельное тестировал. Периодически приходили заказчики и спрашивали, почему нельзя применить Cloud Api. Приходилось отвечать. Или наоборот, отсылать с порога в этом направлении. И внезапно понял, что материала на статью уже достаточно. Поехали.
        Читать дальше →
      • Почему супер-мега-про машинного обучения за 15 минут всё же не стать

        • Tutorial
        Вчера я опубликовал статью про машинное обучение и NVIDIA DIGITS. Как и обещал, сегодняшняя статья — почему всё не так уж и хорошо + пример выделения объектов в кадре на DIGITS.

        NVIDIA подняла волну пиара по поводу разработанной и имплиментированной в DIGITS сетки DetectNet. Сетка позиционируется как решение для поиска одинаковых/похожих объектов на изображении.


        Читать дальше →
      • Как стать супер-мега-про машинного обучения за 15 минут

        • Tutorial
        image

        Недавно на Хабре проскакивал пост vfdev-5 о DIGITS. Давайте поподробнее разберёмся что это такое и с чём его едят. Если в двух словах. Это среда, которая позволяет решить 30-50% задачек машинного обучения на коленке в течении 5 минут. Без умения программировать. Ну, при наличии базы, конечно. И более-менее адекватной карточки от NVIDIA.
        Читать дальше →
      • Колыбель для AI

        • Tutorial


        Есть одна тема в современном Computer Vision, которая часто остаётся за кадром. В ней нет сложной математики и глубокой логики. Но то что её никак не освещают — вгоняет в ступор многих новичков. А тема не проста: имеет множество граблей, про которые не узнаешь, пока не наступишь.

        Тема — называется так: подготовка базы изображений для дальнейшего обучения.
        В статье:

        1. Как можно отличить хорошую базу
        2. Примеры хороших баз
        3. Примеры программ, которыми удобно размечать базы

        Читать дальше →
        • +37
        • 11,4k
        • 7
      • О новых успехах противостояния (СР УВЧ!*)

          Пару дней назад появилась статья, которую почти никто не освещал. На мой взгляд, она замечательная, поэтому про неё расскажу в меру своих способностей. Статья о том, чего пока не было: машину научили играть в шутер, используя только картинку с экрана. Вместо тысячи слов:



          Не идеально, но по мне — очень классно. 3D шутер, который играется в реальном времени — это впервые.
          А теперь чуть-чуть теории
        • Kaggle – наша экскурсия в царство оверфита

          • Tutorial
          Kaggle — это платформа для проведения конкурсов по машинному обучению. На Хабре частенько пишут про неё: 1, 2, 3, 4, и.т.д. Конкурсы на Kaggle интересные и практичные. Первые места обычно сопровождаются неплохими призовыми (топовые конкурсы — более 100к долларов). В последнее время на Kaggle предлагали распознавать:


          И многое-многое другое.

          Мне давно хотелось попробовать, но что-то всё время мешало. Я разрабатывал много систем, связанных с обработкой изображений: тематика близка. Навыки более лежат в практической части и классических Computer Vision (CV) алгоритмах, чем в современных Machine Learning техниках, так что было интересно оценить свои знания на мировом уровне плюс подтянуть понимание свёрточных сетей.

          И вот внезапно всё сложилось. Выпало пару недель не очень напряжённого графика. На kaggle проходил интересный конкурс по близкой тематике.Я обновил себе комп. А самое главное — подбил vasyutka и Nikkolo на то, чтобы составить компанию.

          Сразу скажу, что феерических результатов мы не достигли. Но 18 место из 1.5 тысяч участников я считаю неплохим. А учитывая, что это наш первый опыт участия в kaggle, что из 3х месяц конкурса мы участвовали лишь 2.5 недели, что все результаты получены на одной единственной видеокарте — мне кажется, что мы хорошо выступили.

          О чём будет эта статья? Во-первых, про саму задачу и наш метод её решения. Во-вторых, про процесс решения CV задач. Я писал достаточно много статей на хабре о машинном зрении(1,2,3), но писанину и теорию всегда лучше подкреплять примером. А писать статьи по какой-то коммерческой задаче по очевидным причинам нельзя. Теперь наконец расскажу про процесс. Тем более что тут он самый обычный, хорошо иллюстрирующий как задачи решаются. В-третьих, статья про то, что идёт после решения идеализированной задаче в вакууме: что будет когда задача столкнётся с реальностью.


          Читать дальше →
        • Куда движется современная биометрия

            Биометрия это такая тема, которая сопровождается мифами и легендами. Про 99% точность, надёжность, про прорывные технологии, про распознавание людей Вконтакте. Пару дней назад была статья про Сбербанк, например. Рассказывая про биометрию очень просто манипулировать информацией: мало кто из людей чувствует статистику.

            Лет пять назад я уже писал на Хабре серию статей про биометрию и то как она устроена (1, 2, 3). Как ни странно, за эти годы достаточно мало что изменилось, хотя изменения и произошли. В этой статье я попробую как можно более популярно рассказать про сегодняшние технологии, про то какой прогресс идёт и почему к словам Грефа о том, что к словам «карта, основная задача которой состоит в идентификации, уходит в прошлое» стоит относится с скептицизмом.
            Читать дальше →