All streams
Search
Write a publication
Pull to refresh
13
0
Send message

ElasticSearch — поиск последовательности в тексте

Level of difficultyMedium
Reading time21 min
Views4.7K

Привет! На связи Аркадий из Т-Банка, мы по прежнему делаем TQM, и в этой статье покажу, как мы решили задачу с поиском последовательностей в тексте коммуникаций. Это работает как на простых цепочках из словосочетаний по порядку, так и на сложных кейсах — со временем фразы, каналом «клиент — оператор». Мы по прежнему работаем с ElasticSearch, оставляя возможность “накрутить” на поиск по тексту такие вещи как RAG, LLM и другие модные технологии. 

Несколько ограничений для сегодняшней задачи:

- Нелинейное возрастание сложности запроса при увеличении количества фраз. Поэтому предел у нас 4.

- Шаг тайминга мы выбрали 5 секунд. После каждой фразы ставим метку времени или несколько меток, если фраза заняла больше 5 секунд. Если сделать шаг слишком мелким это позволит искать более точно, но замусорит наше поле метками времени. Кажется, это тот момент когда лучше заранее договориться о требованиях.

А теперь к самому интересному. Добро пожаловать под кат!

Читать далее

ElasticSearch — как мы делали свою речевую аналитику

Reading time10 min
Views13K

Привет! Меня зовут Аркадий. Последние пару лет я в основном занимаюсь развитием поиска по тексту в команде TQM (Tinkoff Quality Management) в банке Тинькофф. Наш продукт — это речевая аналитика по звонкам, чатам и другим активностям, контроль качества, анализ и прочее. Более подробно о продукте можно прочитать на странице бизнес-решений. Примерный объем нашего индекса в проде — 16 Тб, около 450 млрд сущностей.

Каждый раз, когда встает вопрос о полнотекстовом поиске, команда оказывается перед выбором: а надо ли? Уже есть полнотекстовый поиск в Postgres, а тут придется заказывать серверы, строить кластер. Но чем чаще пользователю требуется что-то найти, тем чаще приходится смотреть в сторону специализированных поисковых движков.

Как пишут сами разработчики Elasticsearch, он нужен именно «для поиска, вы же знаете» (you know, for search) и не сможет заменить полноценное хранилище данных. Зато достаточно быстрый, очень надежный и хорошо горизонтально масштабируется (при наших объемах). 

Мы в TQM используем Elastic потому, что он гибкий, широко известный, имеет удобный и простой синтаксис, множество библиотек для работы как на Python, так и на C# (NEST). Хорошо скейлится под наши объемы (1—30 Тб). Kibana также очень удобна, мы используем ее для мониторинга, консоль Kibana применяем для запросов. А еще по сравнению с тем же Sphinx, Elastic удобно масштабировать (просто добавляем шарды, ноды, и он сам распределяет данные по ним). В случае с тем же Sphinx нам пришлось бы писать этот распределенный поиск самим, и не факт, что у нас получилось бы хорошо с первого раза. 

Читать далее

Information

Rating
Does not participate
Works in
Registered
Activity