Search
Write a publication
Pull to refresh
1
0
Send message
Впоследствии было показано*, что любое несепарабельное (запутанное) смешанное состояние двусоставной системы в двухмерном гильбертовом пространстве (система 2 × 2), имеющее сколь угодно малые квантовые корреляции, может быть дистиллировано к синглетной форме.

* Horodecki M., Horodecki P. and Horodecki R. Phys. Rev. Lett. 78, 574 (1997).

Поначалу предполагалось, что такая процедура возможна и для больших систем. Однако вскоре выяснилось*, что, начиная с 2 × 3 систем, квантовая механика подразумевает существование двух качественно различных видов смешанной запутанности. И кроме «свободной» запутанности, которая может быть всегда дистиллирована, существует «связанная» запутанность (bound entanglement), которую невозможно привести к синглетной форме.

* Horodecki M., Horodecki P. and Horodecki R. Phys. Rev. Lett. 80, 5239 (1998).
Результаты, полученные как в опытах Фридмана-Клаузера, так и в опытах Аспэ, чётко говорили в пользу отсутствия эйнштейновского локального реализма. «Жуткое дальнодействие» из мысленного эксперимента окончательно стало физической реальностью. Последний удар по локальности был нанесён в 1989 году многосвязными состояниями Гринбергера — Хорна — Цайлингера (англ.)русск.[17], заложившими базис квантовой телепортации. В 2010 году Джон Клаузер, Ален Аспе и Антон Цайлингер стали лауреатами премии Вольфа по физике «за фундаментальный концептуальный и экспериментальный вклад в основы квантовой физики, в частности за серию возрастающих по сложности проверок неравенств Белла (или расширенных версий этих неравенств) с использованием запутанных квантовых состояний»[18].

В 1991–1992 годах Н. Гизин и A. Перес* показали, что любая двусоставная система, находящаяся в чистом запутанном состоянии, нарушает неравенство Белла.

* Gisin N. Phys. Lett. A 154, 201 (1991); Gisin N. and Peres A. Phys. Lett. A 162, 15 (1992).

Почти сразу же этот результат был обобщен С. Попеску и Д. Рорлихом* и распространен на многосоставные системы, состоящие из произвольного числа подсистем. Таким образом, для чистого запутанного состояния вопрос был в основном решен: любое чистое запутанное состояние нарушает неравенство Белла, и описание такой системы невозможно в рамках локального реализма.

* Popescu S. and Rohrlich D. Phys. Lett. A 166, 293 (1992).

Со смешанными запутанными состояниями ситуация более сложная, хотя на практике, из-за декогеренции, приходится иметь дело именно с ними.
С точки зрения практического применения нелокальных свойств запутанных состояний наиболее эффективны чистые запутанные состояния, как обладающие максимальным нелокальным ресурсом. В связи с чем возникает вопрос, можно ли перевести систему из смешанного запутанного состояния в чистое? Первый шаг в этом направлении сделал Ч. Беннетт (с соавторами)* в 1996 году. Ими была описана процедура дистилляции запутанности к полезной форме синглета, то есть к максимально запутанному состоянию типа ЭПР-пары.

* Bennett C. H., Brassard G., Popescu S., Schumacher B., Smolin J. and Wootters W. K. Phys. Rev. Lett. 76, 722 (1996); Bennett C. H., Brassard G., Popescu S., Schumacher B. Phys. Rev. A 53, 2046 (1996).
In the experiment, we measure previously untested correlations between two entangled photons, and show that these correlations violate an inequality proposed by Leggett for non-local realistic theories. Our result suggests that giving up the concept of locality is not sufficient to be consistent with quantum experiments, unless certain intuitive features of realism are abandoned.
http://www.nature.com/nature/journal/v446/n7138/abs/nature05677.html

Information

Rating
Does not participate
Registered
Activity