На хабре много раз были различные кухонные боты и мне, как инженеру, тоже всегда хотелось сделать своего. Причем, я видел его обязательно с управляемой камерой и манипулятором. Решение строить не просто руку на колесах, а модель марсианской научной лаборатории, было каким-то само собой разумеющимся. Что может быть лучше, чем сделать модель реального ровера с той же функциональностью, какая была нужна мне?
В итоге после трех лет очень неспешной работы, кучи переделок и граблей я получил вот это:
При постройки модели я не преследовал цели сделать точную копию реального марсохода. Я рисовал его исходя из того, какая элементная база мне доступна и довольствовался отдаленным сходством с оригиналом. Основным мотивом для меня было самообучение. Неожиданным, побочным и очень приятным для меня, стал эффект популяризации миссии Curiosity и 3D-печати. К своему удивлению, я обнаружил, что многие вокруг меня вообще ничего не слышали ни о марсоходе, ни о том, что 3D-печать уже достаточно доступная технология.
Начну с того, что было для меня наиболее интересно — с электроники. Можно было бы сказать, что он сделан на Arduino, но я с этим не согласен. Чуть позже объясню, почему я так считаю.
Для постройки модели я использовал следующие готовые части:
Если так грубо посчитать, то выходит чуть больше 300$. Но надо понимать, что эта сумма не учитывает кучу мелочевки, пробы, ошибки и т.д.
Ниже я нарисовал условную структурную схему электроники всей системы. Красным цветом я обозначил линии питания, а синим линии передачи данных.
Пульт управления подключается к ПК через USB. Компьютер, в свою очередь, подключен к LinkIt One через Bluetooth и транслирует команды оператора. LinkIt One пересчитывает эти команды в сигналы управления двигателями и светодиодами, которыми она управляет самостоятельно через драйверы и транзисторы.
К сожалению, сама по себе LinkIt One может управлять только двумя сервоприводами. Поэтому к LinkIt One через UART подключена плата на микроконтроллере Atmega8. Она принимает требуемые углы и формирует точные сигналы для управления пятью сервоприводами.
Роутер в этой схеме стоит практически отдельно. На него подается только питание и он начинает передавать картинку с камеры.
Питается ровер от аккумулятора. Напрямую напряжение аккумулятора подается только на драйверы двигателей. Для остальных модулей схемы используются три пятивольтовых преобразователя, а именно для роутера, логики и сервоприводов.
Вся электроника, кроме роутера с камерой, спрятана внутри «тела» модели марсохода. Может показаться, что там небольшой беспорядок, но на самом деле, если собрать все провода в жгуты (а к этому все готово), то станет гораздо аккуратней. Просто пока я не тороплюсь полностью завершать работы над моделью.
Кстати, я сделал небольшую коммутационную плату, через которую LinkIt One подключается к EduBoard. Также на ней разведено питание, сигнальные разъемы и ключи для управления подсветкой.
Исходники я выкладывать не планирую. Вряд ли кто-то захочет повторить все это один в один. Если будут вопросы, то я с радостью расскажу больше или перешлю интересующие материалы.
Пульт собран на основе той же EduBoard, шилда к ней и двух джойстиков.
На шилде собраны все элементы управления, а именно два переменных резистора, две кнопки и два тумблера. К нему же подключены оба джойстика. Сигналы со всех этих устройств обрабатываются шестью каналами АЦП микроконтроллера, двумя цифровыми входами и двумя входами внешних прерываний. Полученные данные нормируются, оборачиваются протоколом и, через FT232RL, отправляются компьютеру с частотой 10Гц.
Корпус пульта напечатан на 3D-принтере:
За эти три года я успел два раза его переделать. Изначально он был сделан из стеклотекстолита, но механика в нем была продумана очень плохо. Затем я сделал его из оргстекла. Он даже работал, но я ни кому его не стал показывать, так как выглядел он просто ужасно.
Переломным моментом в работе над проектом стало приобретение радиотехническим колледжем, в котором я немного преподаю, 3D-принтера PrintBox One. В итоге, большинство деталей для него напечатано на 3D-принтере. Кузов сделан из оргстекла, а крышка «головы» из стеклотекстолита.
Я чаще всего рисую в SketchUp. Только чертежи колес, которые немного сложнее, подготовлены в SolidWorks моим другом, профессиональным конструктором. Файлы для резки оргстекла сделаны в NanoCad. Перед тем, как начинать изготовление марсохода, я сделал его виртуальную модель. Все файлы проекта для 3D-печати и резки оргстекла, выложены на thingiverse.com. Там довольно много полезных кусочков, которые можно применить и в других проектах.
Получилось, на мой взгляд достаточно неплохо. Он сильно диспропорционален, но это даже добавляет ему какого-то шарма. Жена вообще говорит, что он похож на Валли.
Все механические узлы работают через подшипники, поэтому сервоприводы даже не напрягаются, чтобы держать детали головы и манипулятора. Подвеска не повторяет даже отдаленно функций оригинала, но при этом работает и позволяет роверу преодолевать небольшие препятствия. Пластиковые колеса не очень эффективны на ламинате, но, я думаю, на земле или песке было бы вообще отлично. Как только напечатаю запасную партию колес — попробую.
Вот тут речь пойдет о том, почему я не считаю, что это Arduino. Всего для модели марсохода используется четыре программы.
Первая, написанная на C, исполняется на пульте. О ее функциях я уже писал выше.
Вторая программа для ПК. Она написана на Python. Изначально планировалось, что компьютер будет принимать команды, пересчитывать их и отправлять роверу в обработанном виде. В итоге всеми расчетами занимается LinkIt One, а скрипт на Python'е только перанаправляет байты, принятые от пульта Bluetooth-устройству.
LinkIt One программируется на C++. Она принимает пакеты с ПК (которые доходят ровно в том же виде, какими их формирует пульт), сама управляет двигателями и подсветкой, а также пересчитывает углы сервоприводов и отправляет их в контроллер сервоприводов. Команды для двигателей прогоняются через пропорциональный регулятор, чтобы обеспечить плавность управления и исключить возможность резкого изменения направления вращения двигателей.
Четвертая программа, написанная на С, управляет сервоприводами. Она принимает команды из UART и по алгоритму, который я уже описывал, формирует управляющие импульсы для сервоприводов.
Все это программное обеспечение позволяет управлять им плавно без рывков. Немного потренировавшись, я уверенно собираю предметы с пола. Он специально сделан немного «заторможенным» и инерционным. Если бы сервоприводы дергались с максимальной скоростью, выглядело бы это гораздо хуже.
Как вы могли заметить, я использую аппаратную совместимость с ардуино и их бутлоадеры, но код для проекта написан не на Processing/Wiring. Поэтому я не считаю, что это поделка на ардуино.
Исходниками тоже могу поделиться по запросу. Только там надо чистить много харкода и я планирую дорабатывать математику манипулятора.
На роутер установлена прошивка OpenWrt. При включении роутер создает точку доступа и поднимает веб-сервер со страницей, транслирующей видео.
На моей прошивке самое оптимальное качество получается при частоте следования кадров 5 раз в секунду в формате QCIF (176х144). Это довольно мало, но для езды по квартире достаточно. Можно, кончено, повысить частоту или разрешение, но тогда начинают проскакивать битые кадры.
Вот как выглядит в оригинальном разрешении картинка с головы:
Вот так моя модель марсохода выглядит и работает на данный момент:
Чуть более ранее видео для thingiverse:
И еще одно. С неработающими сервами, но с преодолением препятствий:
Конечно, в первую очередь я делал все этого для ознакомления с многими технологиями, которые я не использовал по работе. Особенно приятно, что модель получилась интересна также для любителей космоса и 3D-печати.
За время работы над проектом накопилась куча разрозненной информации и я могу и хочу поделиться некоторыми своими изысканиями на хабре. Пользуясь случаем, задам пару вопросов о том, насколько это может быть интересно.
В итоге после трех лет очень неспешной работы, кучи переделок и граблей я получил вот это:
При постройки модели я не преследовал цели сделать точную копию реального марсохода. Я рисовал его исходя из того, какая элементная база мне доступна и довольствовался отдаленным сходством с оригиналом. Основным мотивом для меня было самообучение. Неожиданным, побочным и очень приятным для меня, стал эффект популяризации миссии Curiosity и 3D-печати. К своему удивлению, я обнаружил, что многие вокруг меня вообще ничего не слышали ни о марсоходе, ни о том, что 3D-печать уже достаточно доступная технология.
Аппаратное обеспечение
Начну с того, что было для меня наиболее интересно — с электроники. Можно было бы сказать, что он сделан на Arduino, но я с этим не согласен. Чуть позже объясню, почему я так считаю.
Для постройки модели я использовал следующие готовые части:
- Плата LinkIt One, как основной мозг ровера (79$)
- Две платы на микроконтроллере Atmega8 EduBoard, которые я использую для обучения программирования микроконтроллеров. В модели одна из них использована для пульта, а вторая для управления сервоприводами (21$)
- Четыре сервопривода Hitec HS-485 (58$)
- Один сервопривод MG-90S с металлическим редуктором (4,5$)
- Шесть редукторных двигателей постоянного тока, 77 об/мин (48$)
- WiFi-роутер TP-LINK TL-MR3020 (26,7$)
- WEB-камера Logitec C210 (больше не производят) (около 20$)
- Три стабилизатора напряжения 5В, 3А (17,2$)
- Два LiPo-аккумулятора Turnigy, 3S, 3000mAh (26,4$)
- Два самодельных драйвера двигателей (около 7$)
Если так грубо посчитать, то выходит чуть больше 300$. Но надо понимать, что эта сумма не учитывает кучу мелочевки, пробы, ошибки и т.д.
Ниже я нарисовал условную структурную схему электроники всей системы. Красным цветом я обозначил линии питания, а синим линии передачи данных.
Пульт управления подключается к ПК через USB. Компьютер, в свою очередь, подключен к LinkIt One через Bluetooth и транслирует команды оператора. LinkIt One пересчитывает эти команды в сигналы управления двигателями и светодиодами, которыми она управляет самостоятельно через драйверы и транзисторы.
К сожалению, сама по себе LinkIt One может управлять только двумя сервоприводами. Поэтому к LinkIt One через UART подключена плата на микроконтроллере Atmega8. Она принимает требуемые углы и формирует точные сигналы для управления пятью сервоприводами.
Роутер в этой схеме стоит практически отдельно. На него подается только питание и он начинает передавать картинку с камеры.
Питается ровер от аккумулятора. Напрямую напряжение аккумулятора подается только на драйверы двигателей. Для остальных модулей схемы используются три пятивольтовых преобразователя, а именно для роутера, логики и сервоприводов.
Вся электроника, кроме роутера с камерой, спрятана внутри «тела» модели марсохода. Может показаться, что там небольшой беспорядок, но на самом деле, если собрать все провода в жгуты (а к этому все готово), то станет гораздо аккуратней. Просто пока я не тороплюсь полностью завершать работы над моделью.
Кстати, я сделал небольшую коммутационную плату, через которую LinkIt One подключается к EduBoard. Также на ней разведено питание, сигнальные разъемы и ключи для управления подсветкой.
Исходники я выкладывать не планирую. Вряд ли кто-то захочет повторить все это один в один. Если будут вопросы, то я с радостью расскажу больше или перешлю интересующие материалы.
Пульт управления
Пульт собран на основе той же EduBoard, шилда к ней и двух джойстиков.
На шилде собраны все элементы управления, а именно два переменных резистора, две кнопки и два тумблера. К нему же подключены оба джойстика. Сигналы со всех этих устройств обрабатываются шестью каналами АЦП микроконтроллера, двумя цифровыми входами и двумя входами внешних прерываний. Полученные данные нормируются, оборачиваются протоколом и, через FT232RL, отправляются компьютеру с частотой 10Гц.
Корпус пульта напечатан на 3D-принтере:
Кузов марсохода
За эти три года я успел два раза его переделать. Изначально он был сделан из стеклотекстолита, но механика в нем была продумана очень плохо. Затем я сделал его из оргстекла. Он даже работал, но я ни кому его не стал показывать, так как выглядел он просто ужасно.
Переломным моментом в работе над проектом стало приобретение радиотехническим колледжем, в котором я немного преподаю, 3D-принтера PrintBox One. В итоге, большинство деталей для него напечатано на 3D-принтере. Кузов сделан из оргстекла, а крышка «головы» из стеклотекстолита.
Еще пара фотографий
Я чаще всего рисую в SketchUp. Только чертежи колес, которые немного сложнее, подготовлены в SolidWorks моим другом, профессиональным конструктором. Файлы для резки оргстекла сделаны в NanoCad. Перед тем, как начинать изготовление марсохода, я сделал его виртуальную модель. Все файлы проекта для 3D-печати и резки оргстекла, выложены на thingiverse.com. Там довольно много полезных кусочков, которые можно применить и в других проектах.
Получилось, на мой взгляд достаточно неплохо. Он сильно диспропорционален, но это даже добавляет ему какого-то шарма. Жена вообще говорит, что он похож на Валли.
Все механические узлы работают через подшипники, поэтому сервоприводы даже не напрягаются, чтобы держать детали головы и манипулятора. Подвеска не повторяет даже отдаленно функций оригинала, но при этом работает и позволяет роверу преодолевать небольшие препятствия. Пластиковые колеса не очень эффективны на ламинате, но, я думаю, на земле или песке было бы вообще отлично. Как только напечатаю запасную партию колес — попробую.
Программное обеспечение
Вот тут речь пойдет о том, почему я не считаю, что это Arduino. Всего для модели марсохода используется четыре программы.
Первая, написанная на C, исполняется на пульте. О ее функциях я уже писал выше.
Вторая программа для ПК. Она написана на Python. Изначально планировалось, что компьютер будет принимать команды, пересчитывать их и отправлять роверу в обработанном виде. В итоге всеми расчетами занимается LinkIt One, а скрипт на Python'е только перанаправляет байты, принятые от пульта Bluetooth-устройству.
LinkIt One программируется на C++. Она принимает пакеты с ПК (которые доходят ровно в том же виде, какими их формирует пульт), сама управляет двигателями и подсветкой, а также пересчитывает углы сервоприводов и отправляет их в контроллер сервоприводов. Команды для двигателей прогоняются через пропорциональный регулятор, чтобы обеспечить плавность управления и исключить возможность резкого изменения направления вращения двигателей.
Четвертая программа, написанная на С, управляет сервоприводами. Она принимает команды из UART и по алгоритму, который я уже описывал, формирует управляющие импульсы для сервоприводов.
Все это программное обеспечение позволяет управлять им плавно без рывков. Немного потренировавшись, я уверенно собираю предметы с пола. Он специально сделан немного «заторможенным» и инерционным. Если бы сервоприводы дергались с максимальной скоростью, выглядело бы это гораздо хуже.
Как вы могли заметить, я использую аппаратную совместимость с ардуино и их бутлоадеры, но код для проекта написан не на Processing/Wiring. Поэтому я не считаю, что это поделка на ардуино.
Исходниками тоже могу поделиться по запросу. Только там надо чистить много харкода и я планирую дорабатывать математику манипулятора.
Передача видео
На роутер установлена прошивка OpenWrt. При включении роутер создает точку доступа и поднимает веб-сервер со страницей, транслирующей видео.
На моей прошивке самое оптимальное качество получается при частоте следования кадров 5 раз в секунду в формате QCIF (176х144). Это довольно мало, но для езды по квартире достаточно. Можно, кончено, повысить частоту или разрешение, но тогда начинают проскакивать битые кадры.
Вот как выглядит в оригинальном разрешении картинка с головы:
Видео работы
Вот так моя модель марсохода выглядит и работает на данный момент:
Чуть более ранее видео для thingiverse:
И еще одно. С неработающими сервами, но с преодолением препятствий:
Вместо заключения
Конечно, в первую очередь я делал все этого для ознакомления с многими технологиями, которые я не использовал по работе. Особенно приятно, что модель получилась интересна также для любителей космоса и 3D-печати.
За время работы над проектом накопилась куча разрозненной информации и я могу и хочу поделиться некоторыми своими изысканиями на хабре. Пользуясь случаем, задам пару вопросов о том, насколько это может быть интересно.
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Я могу оформить пульт управления в виде отдельного проекта со всеми исходниками и новым корпусом. Стоит ли этим заниматься?
32.14% Да. Я бы и сам такой сделал для себя170
61.63% Да. Мне было бы интересно почитать326
6.24% Нет. Лучше делать такое самостоятельно33
Проголосовали 529 пользователей. Воздержались 124 пользователя.
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Мной накоплен существенный опыт по изготовлению разных корпусов, механики, собрано куча дурацких ошибок и т.д. Описать?
96.96% Да, конечно574
3.04% Нет, не стоит18
Проголосовали 592 пользователя. Воздержался 91 пользователь.