Что меняется при изменении применяемого диапазона частот в радиосвязи – не всегда корректно могут сформулировать даже опытные радиолюбители. С одной стороны формула передачи Фрииса крайне проста, и обсуждать, казалось бы, нечего. С другой стороны, в этой формуле кроме явного упоминания длины волны λ, она неявно скрыта в других коэффициентах. Есть много утверждений, заметок и статей, что с более высокими частотами энергетика радиолинков хуже, не меньше есть и статей «разоблачений мифа» — мол ничем высокие частоты не хуже, учите матчасть.


Оба утверждения верны, причем верно и третье – с повышением частоты энергетика линка может значительно улучшаться. Всё зависит от сценария применения (накладываемых ограничений).


Любая передача информации, не только с помощью радиоволн, а и любых других волн (звуковых, ЭМ волн более высоких частот – т.е. света, гравитационных волн) может происходить в 3 сценариях:


  1. Всенаправленное излучение и всенаправленный прием энергии.
  2. Направленное (секторное, узколучевое) излучение и всенаправленный прием
  3. Направленное излучение и направленный прием

В первом случае ни одна из сторон не знает местоположение в пространстве второй стороны, или не имеет средств наведения своих антенн на корреспондента.


К такому сценарию относятся практически все виды раций (военные, гражданские, авиационные), бытовые устройства (WiFi, Bluetooth, радиотелефоны, IoT, беспроводные сенсоры, телематика, брелки-отмычки), связь между спускаемым зондом и его космической станцией. Антенны обоих подвижных корреспондентов должны быть всенаправленными (изотропными) или близкими к ним.


Во втором случае, если одна из сторон стационарная и вероятное местоположение подвижного корреспондента ограничено некоторым сектором пространства – на стационарной стороне возможно применение направленной антенны, которая концентрирует энергию в избранном направлении, формируя луч (beam). Абонент подвижен, ни своего местоположения, ни положение базовой станции он не знает (или не имеет средств наведения антенн).


К такому сценарию относятся все виды обслуживания, когда стационарная базовая станция обслуживает подвижных абонентов (сотовая связь, репитеры для военных или гражданских раций, телерадиовещание на подвижных абонентов, спутниковая связь с подвижными абонентами, наземные станции космической связи обслуживающие высокоподвижные космические зонды). Антенна базовой станции имеет умеренную направленность и формирует луч для обслуживания желаемой зоны пространства. В идеале в любой точке зоны обслуживания на одинаковом расстоянии R от базы будет одинаковая плотность потока энергии Вт/м2. Антенна подвижного корреспондента должна быть всенаправленная (изотропная).


В третьем случае, если обе стороны знают о расположении другой стороны и имеют возможность направить туда свои антенны – можно существенно сэкономить энергию или увеличить скорость связи при тех же затратах энергии, за счет концентрации луча в пространстве.


К такому сценарию относятся все стационарные линии точка-точка: радиорелейные, WiFi точка-точка, радиолюбительская связь между 2 абонентами использующими направленные антенны; малоподвижные абоненты с возможностью точного позиционирования антенн на корреспондента (наземная станция космической связи и космическая станция с сервоприводами направленных антенн или двигателями позиционирования всей станции с жестко прикрепленной направленной антенной; перспективные модемы 5G mmWave или StarLink Илона Маска с автоматической настройкой луча активной фазированной решеткой АФАР; перспективные massive-MIMO модемы и базовые станции 4G/5G использующие большое количество антенн как АФАР)


Вернемся к формулам Фрииса



Здесь r (receiver) и t (transmitter) относятся к приемной и передающей антеннам, Pr/Pt – соотношение мощности на клеммах приемной антенны к мощности на передающей (больше – лучше), d – расстояние в тех же единицах измерения что и λ (например, в метрах)


Апертура антенны A (то же что «Эффективная/действующая площадь») связана с диаграммой направленности (ДН) антенны и её КНД (D = Directivity):



Для антенны в режиме приема эффективная площадь антенны (используется также термин эффективная поверхность антенны) характеризует способность антенны собирать (перехватывать) падающий на неё поток мощности электромагнитного излучения и преобразовывать этот поток мощности в мощность на нагрузке.


Независимо от типа и конструкции антенны, её апертура A и направленность D связаны математически через длину волны.


У всенаправленной (изотропной) антенны D=1 (0 dBi). Идеального изотропного излучателя на практике не существует, наиболее близким аналогом является обычный полуволновый диполь, у которого D ~1.64 (2.15 dBi)


Сравним апертуру полуволнового диполя (или его аналога – четвертьволновый штырь с противовесом), у которого КНД = 2.15 dBi



Передающая антенна во всех диапазонах формирует одинаковую, близкую к сферической, диаграмму излучения. Плотность потока мощности Вт/м2 от всех источников на одинаковом расстоянии R будет одинаковая.


Но поскольку апертура приемной (тоже всенаправленной) антенны отличается на порядки, то и количество собранной энергии из той же плотности потока будет сильно отличаться.


Возьмем некий абстрактный канал связи, в котором мощность передатчика TX=1W, а чувствительность приемника -101 dBm (2 мкВ при 50 Ом нагрузке). В открытом пространстве (препятствия, поглощения, отражения, помехи здесь не рассматриваем), дальность связи составит:



В открытом пространстве (пока дальность не ограничена видимостью), увеличение частоты в 2 раза увеличивает требования к мощности передатчика в 4 раза. При одинаковой мощности передатчика, увеличение частоты в 2 раза снижает дальность тоже в 2 раза.


Именно этот эффект является доминирующим для объяснения, почему:


  • CDMA/LTE-450 дальнобойнее за GSM-900, который в свою очередь дальнобойнее за GSM-1800.
  • WiFi-2400 дальнобойнее за WiFi-5400
  • Рации 27-40 МГц дальнобойнее за 144-174, которые в свою очередь дальнобойнее за 433-470

В сценарии №2, если на одной стороне разрешено использовать малонаправленную (секторную) антенну ситуация точно такая же как и в сценарии №1, только мощность передатчика может быть уменьшена на усиление антенны базовой станции. Поскольку требуемый сектор обслуживания не зависит от частоты, то направленность антенны БС нужна одинаковая (��пертура антенны БС при этом конечно будет разной на разных диапазонах). При направленности БС 12 dBi (на 10 dB или в 10 раз больше чем у диполя 2 dBi) – выигрыш в мощности составит 10 dB (10 раз), дальность связи на мобильного абонента может быть такая же, как в предыдущей таблице, но уже при TX=0.1W. Для 5400 МГц она опять составит 25.7 км, а для 27 МГц – 5142 км.


В сценарии №3 возможны очень различные комбинации решений.


Если отбросить конструктивные ограничения и сложности, то при равной площади (апертуре) обоих антенн направленность обоих антенн Dr и Dt пропорциональна квадрату частоты. Поэтому эффективность приемной антенны останется неизменной (из одного и того же потока плотности Вт/м2 будет извлечена одинаковая мощность на клеммах, независимо от частоты), а направленность передающей антенны увеличится пропорционально квадрату частоты. При увеличении частоты в 2 раза, луч станет тоньше в 4 раза, плотность потока Вт/м2 в направлении на абонента увеличится в 4 раза.


При равных ограничениях на габариты/вес антенн, более высокие частоты более выгодны энергетически.


На практике же реализовать такое фундаментальное преимущество не так просто.


К антеннам с фиксированной частотно-независимой апертурой относятся только зеркальные параболические антенны. Количество энергии, которое собирает такое зеркало, не зависит от частоты, а луч диаграммы направленности становится более тонким с ростом частоты.
Но сложность в производстве параболической антенны заданного диаметра зависит не только от диаметра. Чем более высокая частота, тем более высокие требования к точности поверхности зеркала и более высокие требования к точности позиционирования и вообще жесткости всей конструкции.


С другими, незеркальными антеннами, ситуация намного сложнее. Все конструкции таких антенн могут быть описаны в частотно-независимых размерах (в лямбдах) и имеют фиксированную диаграмму направленности, присущую этому типу антенн, которая не зависит от выбранной частоты проектирования. Иными словами, например 7-элементная антенна волновой канал (Уда-Яги) будет иметь одинаковую диаграмму направленности и усиление ~10 dBi независимо на какую частоту её рассчитать: на 30 МГц или на 3000 МГц. Во втором случае её апертура будет в 10 000 раз меньше. Просто так, взять и увеличить размеры какого-то типа антенн чтобы увеличить апертуру – нельзя. Добавление каких-либо пассивных (паразитных) структур добавляет направленности очень незначительно (по сравнению с ростом габаритов) и лишь до небольших значений порядка 16 dBi (40 раз).


Дальнейшее повышение апертуры, которое соответствует направленности более 16 dBi на практике возможно только соединением многих антенн в ФАР (фазированную антенную решетку). Теоретически удвоение количества элементов в решетке может увеличивать апертуру в 2 раза, т.е. формировать в 2 раза более тонкий луч с усилением +3 dB. Но практически построение таких ФАР сопряжено с большими трудностями: сигнал от единого источника надо согласованными (по волновому сопротивлению) волноводами синфазно доставить к каждому из N элементов решетки.


Для небольшого количества элементов, например 2х2, 2х4, 3х3 такая задача решаема, а для бОльшего количества элементов она настолько сложна, что всегда проигрывает зеркальным параболическим антеннам, с помощью которых легко создается направленность 20-40 dBi, а в больших проектах (как наземные станции дальней космической связи) достигает 70 dBi (усиление параболической антенны диаметром 70 метров на частоте 5885 МГц).


Для примера рассчитаем дальность связи линии «точка-точка» с TX=1W, чувствительностью -101 dBm с парой параболических антенн диаметром D=1 метр и эффективностью использования апертуры k=60% (типичное значение для современных облучателей зеркала)


Для расчета КНД параболического зеркала воспользуемся формулой:




Увеличение частоты в 2 раза увеличивает дальность в 2 раза или позволяет применить на одной из сторон антенну с диаметром апертуры меньше в 2 раза, или с каждой стороны уменьшить диаметр антенны в SQRT(2) ~ 1,4 раза.


Требования к точности наведения луча (юстировки антенны на абонента) тоже растут пропорционально квадрату частоты.


В этой статье мы НЕ рассматриваем вообще другие вопросы, такие как отражение, дифракция, рефракция, поглощение в газах, препятствиях, атмосфере, ионосфере, шумовая и помеховая обстановка


Выводы


Повышение частоты радиосвязи может давать как преимущества так и недостатки в зависимости от сценария применения (техзадания).


В условиях подвижной безподстроечной связи низкие частоты более выгодны, т.к. апертура всенаправленной антенны пропорциональна квадрату длины волны. Увеличение длины волны в 2 раза увеличивает апертуру антенны в 4 раза. Это дает возможность или увеличить дальность в 2 раза (в условиях видимости и ограничения дальности связи по энергетическому бюджету) или снизить мощность передатчика в 4 раза при прочих равных.


По этой причине военные ранцевые, автомобильные и танковые рации продолжают проектироваться на самый низ диапазона УКВ – от 27 до 50 МГц, в то время как гражданская и коммерческая связь неумолимо осваивает всё более высокие частоты.


Полуволновый диполь (или четвертьволновый штырь с противовесом) на низких частотах более крупные, что является с одной стороны недостатком. С другой стороны именно этот недостаток и позволяет собирать из пространства больше энергии.


В условиях линий точка-точка низкие частоты тоже более выгодны во всех случаях, кроме применения параболических антенн с фиксированной апертурой. Для антенн с одинаковой направленностью апертура убывает пропорционально квадрату роста частоты. При росте частоты в 2 раза, размеры антенны того же типа уменьшаются в 2 раза (в каждом измерении, т.е. объем уменьшается в 8 раз), но расплатой за этой является снижение в 4 раза апертуры такой антенны.


А вот в линиях «точка-точка» с параболическими антеннами – наоборот переход на более высокие частоты позволяет при тех же диаметрах зеркала улучшать энергетический бюджет в 4 раза при росте частоты в 2 раза. Повышение частоты в 2 раза позволяет:


  • при прочих равных увеличить дальность в условиях видимости в 2 раза
  • при той же дальности уменьшить мощность излучения в 4 раза
  • при прочих равных увеличить в 4 раза скорость линии

Расплатой за такое повышение являются повышенные требования к прецизионности изготовления, как самой антенны, так и механизма наведения (юстировки) на абонента.