
Go позволяет писать на ассемблере. Но авторы языка написали такую стандартную библиотеку, что бы этого делать не пришлось. Есть способы писать переносимый и быстрый код одновремено. Как? Добро пожаловат под cut.
Начать писать функции в на ассемблере в go очень просто. Для примера, объявим(forward declaration) функцию
Add, которая складывает 2 int64: func Add(a int64, b int64) int64
Это обычная функция, но тело функции отсутствует. Компилятор будет обосновано ругаться при попытке собрать пакет.
% go build examples/asm ./decl.go:4:6: missing function body
Добавим файл с расширением .s и реализуем функцию на ассемблере.
TEXT ·Add(SB),$0-24 MOVQ a+0(FP), AX ADDQ b+8(FP), AX MOVQ AX, ret+16(FP) RET
Теперь можно собрать, протестировать и использовать
Add как обычную функцию. Этим широко пользуются сами разработчики языка в пакетах runtime, math, bytealg, syscall, reflect, crypto. Это позволяет использовать аппаратные оптимизации процессора и команды, не представленные в языке.Но есть проблема — функции на asm не могут быть оптимизированы и встроены(inline). Без этого накладные расходы могут быть непозволительно большими.
var Result int64 func BenchmarkAddNative(b *testing.B) { var r int64 for i := 0; i < b.N; i++ { r = int64(i) + int64(i) } Result = r } func BenchmarkAddAsm(b *testing.B) { var r int64 for i := 0; i < b.N; i++ { r = Add(int64(i), int64(i)) } Result = r }
BenchmarkAddNative-8 1000000000 0.300 ns/op BenchmarkAddAsm-8 606165915 1.930 ns/op
Было несколько предложений для inline асемблера, как директива
asm(...) в gcc. Ни одно из них не было принято. В место этого, в go добавили встаиваемые(intrinsic) функции.Встраиваемые функции go написаны на обычном go. Но компилятору известно, что их можно заменить на что-то более оптимальное. В Go 1.13 встраиваемые функции содержатся в
math/bits и sync/atomic.Функции в этих пакетах имеют причудливые сигнатуры. Фактически они повторяют сигнатуры процессорных комманд. Это позволяет компилятору, если целевая архитектура поддерживает, прозрачно заменять вызовы функции на ассемблерные инструкции.
Ниже хочу рассказать о двух разных путях, которыми компилятор go создаёт более эффективный код с использовнием встроенных функций.
Population count
это количество единиц в двоичном представлении числа — важный криптографический примитив. Так как это важная операция, большинство современных cpu предосталяют реализацию в железе.
Пакет
math/bits предоставляет эту операцию в функциях OnesCount*. Они распознаются и заменяются на инструкцию процессора POPCNT.Чтобы посмотреть, насколько это может быть эффективнее, давайте сравним 3 реализации. Первая — алгоритм Кернигана.
func kernighan(x uint64) (count int) { for x > 0 { count++ x &= x - 1 } return count }
Количество циклов алгоритма совпадает с количеством установленных бит. Больше бит — больше время выполнения, что потенциально приводит к утечке информации по сторонним каналам.
Второй алгоритм взят из книги Hacker’s Delight.
func hackersdelight(x uint64) uint8 { const m1 = 0b0101010101010101010101010101010101010101010101010101010101010101 const m2 = 0b0011001100110011001100110011001100110011001100110011001100110011 const m4 = 0b0000111100001111000011110000111100001111000011110000111100001111 const h1 = 0b0000000100000001000000010000000100000001000000010000000100000001 x -= (x >> 1) & m1 x = (x & m2) + ((x >> 2) & m2) x = (x + (x >> 4)) & m4 return uint8((x * h1) >> 56) }
Стратегия «разделяй и властвуй» позволяет этой версии работать за O(log₂) от длинны числа, и за константное время от количества бит, что важно для криптографии. Давайте сравним производительность с
math/bits.OnesCount64.func BenchmarkKernighan(b *testing.B) { var r int for i := 0; i < b.N; i++ { r = kernighan(uint64(i)) } runtime.KeepAlive(r) } func BenchmarkPopcnt(b *testing.B) { var r int for i := 0; i < b.N; i++ { r = hackersdelight(uint64(i)) } runtime.KeepAlive(r) } func BenchmarkMathBitsOnesCount64(b *testing.B) { var r int for i := 0; i < b.N; i++ { r = bits.OnesCount64(uint64(i)) } runtime.KeepAlive(r) }
Чтобы быть честным, мы передаём функциям одни и теже параметры: последовательность от 0 до b.N. Это справедливее к методу Кернигана, так как её время выполнения увеличивается с количеством бит входного аргумента. ➚
BenchmarkKernighan-4 100000000 12.9 ns/op BenchmarkPopcnt-4 485724267 2.63 ns/op BenchmarkMathBitsOnesCount64-4 1000000000 0.673 ns/op
math/bits.OnesCount64 выигрывает по скорости в 4 раза. Но действительно ли оно использует аппаратную реализацию, или компилятор просто лучше оптимизировал алгоритм из Hackers Delight? Пора залезть в assembler.go test -c # компилируем тесты без запуска
Есть простая утилита для дизасемблирования go tool objdump, но я (в отличии от автора оригинальной статьи), воспользуюсь IDA.

Здесь много чего происходит. Самое важное: инструкция x86
POPCNT встроена в код самого теста, как мы и надеялить. Благодаря этому banchmark работает быстрее, чем альтернативы.Интересно вот это ветвление.
cmp cs:runtime_x86HasPOPCNT, 0 jz lable
Да, это полифил на асемблере. Не все процессоры поддерживают
POPCNT. При запуске программы, до вашего main функция runtime.cpuinit проверяет, есть ли необходимая инструкция и сохраняет в runtime.x86HasPOPCNT. Каждый раз программа проверяет, можно ли использовать POPCNT, или воспользоваться полифилом. Так как значение runtime.x86HasPOPCNT не меняется после инициализации, предсказание ветвления процессора отрабатывает относительно точно.Атомарный счётчик
Встроенные(intrinsic) функции — это обычный код Go, они могут быть встроены(inline) в поток инструкций. Для примера сделаем из странных сигнатур функций пакета atomic абстракцию счётчика с методами.
package main import ( "sync/atomic" ) type counter uint64 func (c *counter) get() uint64 { return atomic.LoadUint64((*uint64)(c)) } func (c *counter) inc() uint64 { return atomic.AddUint64((*uint64)(c), 1) } func (c *counter) reset() uint64 { return atomic.SwapUint64((*uint64)(c), 0) } func F() uint64 { var c counter c.inc() c.get() return c.reset() } func main() { F() }
Кто-то подумает, что такое ООП добавит накладные расходы. Но Go не Java — язык не использует связывание в runtime, если явно не использовать интерфейсы. Код выше будет свёрнут в эффективный поток процессорных инструкций. Как будет выглядеть main?

По порядку.
c.inc превращается в lock xadd [rax], 1 — атомарное сложение x86. c.get становится обычной инструкцией mov, которая уже является атомарной в x86. c.reset становится атомарным обменом xchg между обнулённым регистром и памятью. Заключение
Встраиваемые функции — аккуратное решение, которое предоставляет доступ к низкоуровневым операциям без расширения спецификации языка. Если архитектура не имеет специфических примитивов sync/atomic (как некоторые варианты ARM), или операций из math/bits, то компилятор вставляет полифил на чистом go.
