Самое сильное впечатление от небоскреба Лахта Центра получаешь, когда смотришь на него снизу, от подножия — вверх и кажется, что он уходит куда-то в небесную бесконечность. И вот именно тогда, а не с далеких городских ракурсов, захватывает дух от высоты и мощи. И где-то десятой очередью приходит мысль – хорошо точно знать, что строили толково и на совесть. И дважды хорошо, что у нас есть он, мониторинг. Разработка отечественных программистов, специально для комплекса. Волшебная вещь, для предотвращения малейшей возможности плохих вариантов р��звития будущего. Под катом – все о том, как это работает.

Любое здание подвергается воздействию множества внешних сил. Перепады температуры и влажности, напор ветра, давление масс снега, неоднородность почвы и ее изменение с течением времени. На небоскребы с их размерами, массой и сложностью конструкции, это влияние возрастает многократно.
Возникновение деформаций, зон повышенного напряжения конструкции опасно даже для небольших коттеджей, что уж говорить о небоскребах, где последствия незамеченных изменений в конструктиве несоизмеримо более критичны.

Поэтому во всех современных высотных зданиях применяются системы мониторинга деформаций, предполагающие использование целого комплекса инструментов контроля.

Лупа в этот инструментарий, конечно, не входит, зато входит множество датчиков. В Лахта Центре их порядка 3 тысяч, и расположены они во всех ключевых конструкционных элементах всех сооружений комплекса.
Самая многочисленная группа – тензометры, находящиеся на переднем крае деформационной обороны. Это одни из самых надежных и долговечных, а потому и распространенных датчиков, которые используются для измерения деформаций и напряжений. Все дело в простоте конструкции.
По сути, тензометр — это просто отрезок высокопрочной стальной проволоки — струны, натянутой внутри полой металлической трубки между двумя концевыми блоками. При деформации конструкции расстояние между концевыми блоками меняется, вместе с ним изменяется сила натяжения струны и, соответственно, частота колебаний. Смена состояния преобразуется в цифровые сигналы, которые через мультиплексоры и даталоггеры (регистраторы данных) передаются в систему мониторинга.

Тензометрические датчики приварены к металлическим балкам, залиты в бетон, а отсутствие возможности их обслуживания компенсируется многократным резервом количества. Он установлены даже в шахты ниже свайного поля до геодезических отметок минус 100 м.

Кликабельно
Сигнал с каждого из порядка 2,5 тыс. тензометрических датчиков Лахта Центра передается в систему мониторинга, и даже выход из строя отдельных тензометров — хотя особо там ломаться нечему — не особо отразится на точности общей картины состояния сооружения.

Кликабельно
Информация с тензометров аккумулируется раз в час и передается на сервер раз в шесть часов. Этого более чем достаточно для такого вялотекущего по своей природе процесса как деформация. Совсем другое дело колебания зданий – это процесс быстрый, непрерывный, а по изменению характеристик колебания также можно выявить изменения в конструкциях. Для этого через каждые несколько этажей башни Лахта Центра организованы контрольные пункты, оснащенные акселерометрами – измерителями колебаний.

Устройство простейшего акселерометра. Груз закреплён на пружине. Демпфер подавляет колебания груза. Чем больше кажущееся ускорение, тем сильнее деформируется пружина, изменяя показания прибора
На основе измерений строится амплитудно-частотная характеристика конструктивных элементов здания, а отклонение от нормы частоты или амплитуды – сигнал о том, что что-то пошло не так.

Еще один тип датчиков – инклинометры, — измеряют угол наклона конструктивного элемента, на котором установлены.

Современный измерительный комплекс установлен в шпиле башни Лахта Центра. С помощью GNSS-станции отслеживается положение шпиля в двумерной системе координат: спутник, грубо говоря, снимает рисунок, который башня рисует шпилем в зависимости от силы и направления ветра.

Кликабельно
Метеостанция, в свою очередь, будет оценивать зависимость состояния конструкции от показаний влажности, температуры, скорости и направления ветра.

Кликабельно
Тахеометр, установленный на арке, по реперной точке измеряет лазером угол наклона и расстояние, с��ещение которых в какую-либо сторону может говорить об изменении в расположении сооружения, например, из-за осадки.

Но главная фишка автоматизированной системы мониторинга инженерных конструкций Лахта Центра,– не в разнообразии и количестве датчиков. Датчиками напичкано любое современное высотное здание, и в Burj Khalifa их не меньше. А вот система анализа поступающей с измерителей информации в петербургском супертолле по-настоящему уникальна. Она основана на постоянном сравнении реальной картины состояния зданий Лахта Центра, основанной на показаниях датчиков, с прогнозируемыми значениями деформаций.

Расчет напряженно-деформированного состояния конструкций выполняется на базе сертифицированного программного пакета моделирования конструкций на основе метода конечных элементов FEM-models компании ООО «ПИ Геореконструкция».
Расчетная модель зданий создается совместно с учетом фундамента и основания (массива грунта), так как подземная и надземная части здания работают совместно, взаимно влияя друг на друга. Для создания расчетной модели здания конечные элементы системы наделяются свойствами реальных материалов с точно заданными текущими механическими параметрами.

FEM-модель строится с использованием проектной 3D-модели (BIM) с учетом реальной геометрии здания, которая может корректироваться в процессе строительства и эксплуатации. То есть, в интерактивной модели уточнена исходная BIM-модель и заложены характеристики реальных материалов, из которых изготовлен каждый элемент — класс бетона, толщины перекрытий, сечения балок и т.п.
На основе проведенного расчета конструкций в программной среде проверяются все возможные версии развития деформаций. Таким образом находятся аварийные границы показаний датчиков, сценарии и алгоритмы развития деформаций, выполняется разработка критериев оценки реального технического состояния — устойчивости, остаточного ресурса и долговечности, в соответствии с показаниями датчиков мониторинга конструкций. Критерии оценки включают в себя абсолютные и относительные отклонения конструкций, учитывают поведение здания как единого целого.

Схема размещения измерительного оборудования на трехмерной расчетной схеме
FEM-модель — это настоящий цифровой двойник. Такой же, как, например, digital twins космических кораблей, которые используют в NASA, чтобы моделировать ситуации, происходящие в космосе. Ведь там сбор информации с датчиков при помощи телеметрии — тоже единственный способ контролировать ситуацию, выявлять неполадки, и, проанализировав и смоделировав на земле происходящее на орбите, искать возможные способы решения проблем.

Система мониторинга деформаций Лахта Центра отслеживает состояние несущих конструкций в режиме реального времени с частотой опроса до тысячи показаний в секунду, накапливает статистику практически с самого начала строительства здания, контролирует изменения по мере увеличения нагрузки и продолжит это делать во время эксплуатации. Более того, систему можно обучать и за счет этого автоматически изменять модель здания с учетом фактических показаний датчиков.

Провода от первых датчиков в сваях — они были установлены в самом начале строительства
Еще одно отличие системы мониторинга, использующейся в Лахта Центре, от аналогов в других небоскребах – наличие не только аварийной границы деформации элементов здания, но и предупредительной. На основе той же математической модели с учетом реального состояния здания строится область допустимых значений, в которых нет отклонений от прогнозных показателей, и предупредительная область, которая с точки зрения СНиПа еще далека от аварийного состояния, но выход в нее – это уже повод для принятия управленческих решений.

Желтая зона – предупредительное отклонение от прогнозных значений, красная – аварийное
Несмотря на то, что все данные, поступающие с датчиков, анализируются в автоматическом режиме, решения принимают люди. Диспетчер при поступлении тревожного сигнала сообщает об этом дежурному, который проводит визуальный осмотр, делает фотографию, привязанную в системе к нужной точке и готовит отчет. Этот отчет анализирует инженер-конструктор и принимает решение о перерасчете FEM-модели, если причины изменения параметров некритичны, и связаны, например с естественной и прогнозируемой осадкой здания. В противном случае оповещение получает ��лавный инженер, который может принять решение даже об эвакуации. Но, учитывая запас прочности Лахта Центра, для развития такого сценария требуется внешнее воздействие на уровне шестибалльного землетрясения. Сигнал о приближении к аварийной границе развития деформаций автоматически передается в службы МЧС.

Любое здание подвергается воздействию множества внешних сил. Перепады температуры и влажности, напор ветра, давление масс снега, неоднородность почвы и ее изменение с течением времени. На небоскребы с их размерами, массой и сложностью конструкции, это влияние возрастает многократно.
Возникновение деформаций, зон повышенного напряжения конструкции опасно даже для небольших коттеджей, что уж говорить о небоскребах, где последствия незамеченных изменений в конструктиве несоизмеримо более критичны.

Поэтому во всех современных высотных зданиях применяются системы мониторинга деформаций, предполагающие использование целого комплекса инструментов контроля.

Лупа в этот инструментарий, конечно, не входит, зато входит множество датчиков. В Лахта Центре их порядка 3 тысяч, и расположены они во всех ключевых конструкционных элементах всех сооружений комплекса.
Самая многочисленная группа – тензометры, находящиеся на переднем крае деформационной обороны. Это одни из самых надежных и долговечных, а потому и распространенных датчиков, которые используются для измерения деформаций и напряжений. Все дело в простоте конструкции.
По сути, тензометр — это просто отрезок высокопрочной стальной проволоки — струны, натянутой внутри полой металлической трубки между двумя концевыми блоками. При деформации конструкции расстояние между концевыми блоками меняется, вместе с ним изменяется сила натяжения струны и, соответственно, частота колебаний. Смена состояния преобразуется в цифровые сигналы, которые через мультиплексоры и даталоггеры (регистраторы данных) передаются в систему мониторинга.

Тензометрические датчики приварены к металлическим балкам, залиты в бетон, а отсутствие возможности их обслуживания компенсируется многократным резервом количества. Он установлены даже в шахты ниже свайного поля до геодезических отметок минус 100 м.

Кликабельно
Сигнал с каждого из порядка 2,5 тыс. тензометрических датчиков Лахта Центра передается в систему мониторинга, и даже выход из строя отдельных тензометров — хотя особо там ломаться нечему — не особо отразится на точности общей картины состояния сооружения.

Кликабельно
Информация с тензометров аккумулируется раз в час и передается на сервер раз в шесть часов. Этого более чем достаточно для такого вялотекущего по своей природе процесса как деформация. Совсем другое дело колебания зданий – это процесс быстрый, непрерывный, а по изменению характеристик колебания также можно выявить изменения в конструкциях. Для этого через каждые несколько этажей башни Лахта Центра организованы контрольные пункты, оснащенные акселерометрами – измерителями колебаний.

Устройство простейшего акселерометра. Груз закреплён на пружине. Демпфер подавляет колебания груза. Чем больше кажущееся ускорение, тем сильнее деформируется пружина, изменяя показания прибора
На основе измерений строится амплитудно-частотная характеристика конструктивных элементов здания, а отклонение от нормы частоты или амплитуды – сигнал о том, что что-то пошло не так.

Еще один тип датчиков – инклинометры, — измеряют угол наклона конструктивного элемента, на котором установлены.

Современный измерительный комплекс установлен в шпиле башни Лахта Центра. С помощью GNSS-станции отслеживается положение шпиля в двумерной системе координат: спутник, грубо говоря, снимает рисунок, который башня рисует шпилем в зависимости от силы и направления ветра.

Кликабельно
Метеостанция, в свою очередь, будет оценивать зависимость состояния конструкции от показаний влажности, температуры, скорости и направления ветра.

Кликабельно
Тахеометр, установленный на арке, по реперной точке измеряет лазером угол наклона и расстояние, с��ещение которых в какую-либо сторону может говорить об изменении в расположении сооружения, например, из-за осадки.

Но главная фишка автоматизированной системы мониторинга инженерных конструкций Лахта Центра,– не в разнообразии и количестве датчиков. Датчиками напичкано любое современное высотное здание, и в Burj Khalifa их не меньше. А вот система анализа поступающей с измерителей информации в петербургском супертолле по-настоящему уникальна. Она основана на постоянном сравнении реальной картины состояния зданий Лахта Центра, основанной на показаниях датчиков, с прогнозируемыми значениями деформаций.

Расчет напряженно-деформированного состояния конструкций выполняется на базе сертифицированного программного пакета моделирования конструкций на основе метода конечных элементов FEM-models компании ООО «ПИ Геореконструкция».
Расчетная модель зданий создается совместно с учетом фундамента и основания (массива грунта), так как подземная и надземная части здания работают совместно, взаимно влияя друг на друга. Для создания расчетной модели здания конечные элементы системы наделяются свойствами реальных материалов с точно заданными текущими механическими параметрами.

FEM-модель строится с использованием проектной 3D-модели (BIM) с учетом реальной геометрии здания, которая может корректироваться в процессе строительства и эксплуатации. То есть, в интерактивной модели уточнена исходная BIM-модель и заложены характеристики реальных материалов, из которых изготовлен каждый элемент — класс бетона, толщины перекрытий, сечения балок и т.п.
Владимир Лукин, руководитель направления по железобетонным конструкциям Лахта Центра, курирует создание проекта системы мониторинга комплекса Лахта Центр:
— Сопоставление данных мониторинга с интерактивной конечно-элементной моделью дает возможность управлять параметрами модели, а именно: изменять конструктивную схему в соответствии с ходом возведения здания, изменять параметры материалов и конструкций в соответствии с исполнительной документацией, изменять величину нагрузок в соответствии с реальной картиной нагружения конструкций. Таким образом, конечно-элементная модель зданий адаптируется по мере изменения внешних условий и выдает прогнозы все более приближенные к реальным значениям, фиксируемым датчиками мониторинга.
На основе проведенного расчета конструкций в программной среде проверяются все возможные версии развития деформаций. Таким образом находятся аварийные границы показаний датчиков, сценарии и алгоритмы развития деформаций, выполняется разработка критериев оценки реального технического состояния — устойчивости, остаточного ресурса и долговечности, в соответствии с показаниями датчиков мониторинга конструкций. Критерии оценки включают в себя абсолютные и относительные отклонения конструкций, учитывают поведение здания как единого целого.
Дмитрий Бабичев, руководитель проекта компании «Телрос»:
— Материалы, из которых построено здание, всегда имеют отличия от тех, что закладывались в конструкторской модели. Что, в свою очередь, влияет и на отклонения реальных нагрузок от расчетных. Математическая модель, которая используется в автоматизированной системе мониторинга состояния инженерных конструкций Лахта Центра – это модель реального объекта. И исходя из анализа показаний датчиков уже можно констатировать, что этот реальный объект оказался даже гораздо более жестким, чем проектная модель, и так построенная с более чем серьезным запасом прочности.

Схема размещения измерительного оборудования на трехмерной расчетной схеме
FEM-модель — это настоящий цифровой двойник. Такой же, как, например, digital twins космических кораблей, которые используют в NASA, чтобы моделировать ситуации, происходящие в космосе. Ведь там сбор информации с датчиков при помощи телеметрии — тоже единственный способ контролировать ситуацию, выявлять неполадки, и, проанализировав и смоделировав на земле происходящее на орбите, искать возможные способы решения проблем.

Система мониторинга деформаций Лахта Центра отслеживает состояние несущих конструкций в режиме реального времени с частотой опроса до тысячи показаний в секунду, накапливает статистику практически с самого начала строительства здания, контролирует изменения по мере увеличения нагрузки и продолжит это делать во время эксплуатации. Более того, систему можно обучать и за счет этого автоматически изменять модель здания с учетом фактических показаний датчиков.

Провода от первых датчиков в сваях — они были установлены в самом начале строительства
Еще одно отличие системы мониторинга, использующейся в Лахта Центре, от аналогов в других небоскребах – наличие не только аварийной границы деформации элементов здания, но и предупредительной. На основе той же математической модели с учетом реального состояния здания строится область допустимых значений, в которых нет отклонений от прогнозных показателей, и предупредительная область, которая с точки зрения СНиПа еще далека от аварийного состояния, но выход в нее – это уже повод для принятия управленческих решений.

Желтая зона – предупредительное отклонение от прогнозных значений, красная – аварийное
Несмотря на то, что все данные, поступающие с датчиков, анализируются в автоматическом режиме, решения принимают люди. Диспетчер при поступлении тревожного сигнала сообщает об этом дежурному, который проводит визуальный осмотр, делает фотографию, привязанную в системе к нужной точке и готовит отчет. Этот отчет анализирует инженер-конструктор и принимает решение о перерасчете FEM-модели, если причины изменения параметров некритичны, и связаны, например с естественной и прогнозируемой осадкой здания. В противном случае оповещение получает ��лавный инженер, который может принять решение даже об эвакуации. Но, учитывая запас прочности Лахта Центра, для развития такого сценария требуется внешнее воздействие на уровне шестибалльного землетрясения. Сигнал о приближении к аварийной границе развития деформаций автоматически передается в службы МЧС.
