Это перевод-адаптация статьи, опубликованной инженерами Canon в японском журнале по прикладной физике Japanese Journal of Applied Physic.

Применение в фототехнике светочувствительных матриц позволило отойти от использования механического затвора и его вариаций. Это дало положительный эффект: отсутствие вибраций в момент спуска затвора и возможность значительно увеличить скорость съемки, не усложняя конструкцию. Но переход фототехники на новый уровень принес и новые проблемы, которые связаны со скоростной съемкой.

image

Чтобы понять суть возникших затруднений, нужно разобрать принцип работы светочувствительных матриц. Говоря о них во множественном числе, мы подразумеваем матрицы, изготовленные по разным технологиям. В их работе есть и сходства, и принципиальные различия. Начнем с общих черт. Любая светочувствительная матрица состоит из набора фотодиодов, которые преобразуют падающий на них световой поток в электрический сигнал. Различие же заключается в способе накопления и считывания сигналов: выдержка снимка определяется не временем, на которое открывается затвор, а временем между обнулением заряда матрицы и моментом считывания с нее информации.

В CCD-матрице сигнал считывается построчно, и такой затвор называется бегущим, или rolling-затвором. Во время построчного считывания быстродвижущийся объект успевает изменить положение, поэтому на снимке возникают искажения. И чем больше скорость объекта, тем больше искажения на снимке.

Частично эта проблема решается в CMOS-матрицах, которые относительно недавно стали альтернативой CCD-матриц. Здесь считывание сигнала возможно с любого фрагмента матрицы и в любом порядке. Это не только увеличивает скорость обмена данными, но и позволяет получить произвольный доступ к отдельным пикселям.

По сути, CMOS-матрица является интегральной микросхемой, где каждый пиксель образует отдельную ячейку и имеет собственную обвязку, преобразующую заряд фотодиода в напряжение непосредственно в самом пикселе. В общем виде ячейка состоит из:

  • фотодиода;
  • электронного затвора;
  • конденсатора, накапливающего заряд с фотодиода;
  • усилителя сигнала;
  • шины считывания строки;
  • шины передачи сигнала процессору;
  • линии сигнала сброса.

Во время съемки изображение формируется за счет синтеза нескольких кадров. С одной стороны, это дает глубину и насыщенность снимку, но с другой стороны, при дрожании или съемке движущихся объектов качество изображения снижается. Это выражается в размытости, «двойном» изображении или эффекте бегущего затвора. Виной тому — чередование процессов экспозиции и считывания. Примем условно за время экспозиции t. Тогда в момент t происходит съемка первого кадра. В период t+t считываются данные этого кадра. Затем, после сброса матрицы, выполняется следующий кадр. Таким образом, разрыв между кадрами составляет t. Такая ситуация аналогична алгоритму с rolling-затвором.

Одно из решений этой проблемы было предложено нашими разработчиками, и заключалось оно в следующем. В обычной ячейке CMOS-матрицы используется один конденсатор с обвязкой, выполняющий функцию элемента памяти, поэтому в любой момент времени съемки ячейка находится в состоянии или заряда этого конденсатора (экспозиция), или разряда (считывание). В ячейке же нашей разработки используется два элемента памяти. Благодаря этому могут происходить одновременно два процесса. После съемки первого кадра, во время считывания данных с одного элемента памяти, сразу же экспонируется следующий кадр с записью на второй элемент памяти. За счет этого обеспечивается непрерывность записи и стабильность изображения.

Однако смысл этого изобретения не ограничивается только непрерывностью съемки. Фактически мы получили несколько различных режимов работы CMOS-сенсора. Все зависит от процедуры считывания пикселей.

  • При считывании с высокой частотой кадров насыщенность пикселей может происходить за счет или множественного насыщения фотодиода, или разового насыщения элемента памяти. При этом четкость изображения сочетается с насыщенностью.
  • При режиме съемки с высокой насыщенностью происходит заполнение и считывание одновременно двух запоминающих элементов. При этом снижается периодичность считывания, что в качестве бонуса дает снижение общей потребляемой мощности.

Возможность множественного накопления используется при выполнении серий экспозиций, например при чередовании коротких и длинных. При этом чередуются и запоминающие элементы: на одном накапливается сигнал коротких экспозиций, а на другом — длинных. При сравнении с CMOS-матрицей с одним запоминающим элементом и суммарной выдержкой равной серии из 5 коротких и 4 длинных экспозиций улучшение динамического диапазона составляет около 42 дБ.

Увеличение деталей обвязки пикселя приводит к повышению паразитного шума. Чтобы снизить его влияние, элементы ячейки располагаются по диагонали симметрично относительно фотодиода. От влияния светового потока они защищены световым экраном. Только для фотодиода оставлена ап��ртура размером 1,3 мкм. Фокусировка падающего на фотодиод света осуществляется с помощью блока двойной линзы и световода. В блоке между линзами располагается цветной фильтр в соответствии с шаблоном Байера. Для световода применен материал с высоким показателем преломления. За счет этого световод в форме перевернутого конуса имеет небольшую высоту, соответствующую трем слоям медной проводки. Верхний диаметр световода —2,4 мкм, а нижний — 1,1 мкм.

Единичный пиксель матрицы, согласно шаблону Байера, состоит из пары пикселей с двойными ячейками памяти. Блок единичного пикселя включает в себя:

  • 2 фотодиода;
  • 4 запоминающих элемента (конденсатора);
  • 13 транзисторов.

Общий размер матрицы — 2676 Н × 2200 V, что составляет почти 5,9 мегапикселя.
В сравнительной таблице даны характеристики различных режимов считывания разработанной CMOS-матрицы с двойной внутрипиксельной памятью и обычной матрицы, имеющей сопоставимые показатели.

Режим считывания 2 CDMEM с высокой частотой кадров 2 CDMEMs высокая насыщенность 2 CDMEM с высоким DR 1 CDMEM нормальный
Технология процесса FSI, 130 нм1P4M + LS CMOS
Оптический формат 2/3 дюйма
Шаг пикселя Квадрат 3,4, мкм
Количествоэфф. пикселей 2592 (В),×,2054 (В) = 5,3 М пикселей
Источник питания 3,3 В (аналоговый), 1,2 В (цифровой)
Максимальная частота кадров 120 кадров в секунду 100 кадров в секунду 60 кадров в секунду 120 кадров в секунду
Потребляемая мощность 480 мВт 400 мВт 480 мВт 450 мВт
Полная вместимость скважины 9500 е - 19 000 е - 940 000 е -(эквивалент) 8100 е — или 16 200 е -
Чувствительность @ зеленый 30 000 е — / лк.с 28 000 е — /лк.с
Временной шум 2,8 1,8
Динамический диапазон 71 дБ 77 дБ 111 дБ 73 дБ
PLS CDMEM −83 дБ −89 дБ

Фактически разработанный CMOS-датчик изображения с шагом пикселя 3,4 мкм с двойной внутрипиксельной памятью имеет около 5,3 эффективных мегапикселя и динамический диапазон более 110 дБ при экспозиции в одном кадре с попеременным многократным накоплением. Такой режим особенно подходит для съемки движущихся объектов и может быть использован в кинокамерах, приборах машинного зрения, автомобилях, при воздушной съемке и в камерах наблюдения.