Как стать автором
Обновить

Как найти что-то в тексте

Время на прочтение8 мин
Количество просмотров7.4K
Найти объект или распознать понятие в тексте — с этого начинается решение большинства NLP задач. Если вы проектируете поисковую систему, создаете голосового помощника или классифицируете пользовательские запросы, прежде всего вы должны разобрать входной текст и попытаться найти в нем именованные сущности, которые могут быть универсальными, такими как даты, страны и города, или специфичными для конкретной модели. Обратите внимание, мы сейчас говорим лишь о тех видах задач, для которых заранее известно, что именно вы ищете или что может встретиться в тексте.

image

NER (named entity recognition) компонент, то есть программный компонент для поиска именованных сущностей, должен найти в тексте объект и по возможности получить из него какую-то информацию. Пример — “Дайте мне двадцать две маски”. Числовой NER компонент находит в приведенном тексте словосочетание “двадцать две” и извлекает из этих слов числовое нормализованное значение — “22”, теперь это значение можно использовать.

NER компоненты могут базироваться на нейронных сетях или работать на основе правил и каких-либо внутренних моделях. Универсальные NER компоненты часто используют второй способ.

Рассмотрим несколько готовых решений по поиску стандартных сущностей в тексте. В данной заметке мы остановимся на бесплатных или бесплатных с ограничениями библиотеках, а также расскажем о том, что сделано в проекте Apache NlpCraft в рамках данной проблематики. Представленный ниже список не является подробным и обстоятельным обзором, которых и так достаточное количество в сети, а скорее кратким описанием основных особенностей, плюсов и минусов использования этих библиотек.

Провайдеры NER компонентов


Apache OpenNlp


Apache OpenNlp предоставляет для английского языка достаточно стандартный набор NER компонентов, работающих с датами, временем, географией, организациями, числовыми процентами и персонами. Имеется небольшой набор и для других языков (испанский, голландский).

Поставка:
Java библиотека. Apache OpenNlp не поставляет модели вместе с основным проектом. Они доступны для скачивания отдельно.

Плюсы:
Apache лицензия. Модели протестированы на множестве внедрений.

Минусы:
Судя по всему, модели недаром вынесены из основного проекта. Складывается впечатление, что работа над ними или остановлена или идет в удручающе неторопливом темпе, так как новых моделей или изменений в существующих не видно уже довольно давно. Так как пользователи Apache OpenNlp могут создавать и тренировать свои собственные модели, возможно эта задача фактически полностью переложена на них.

Stanford Nlp


Stanford NLP — живой, постоянно развивающийся продукт отличного качества и широких возможностей. Для английского языка добавлена поддержка распознавания следующих сущностей: person, location, organization, misc, money, number, ordinal, percent, date, time, duration, set. Кроме того встроенный Regex NER компонент позволяет находить с высокой степенью точности такие сущности как: email, url, city, state_or_province, country, nationality, religion, (job) title, ideology, criminal_charge, cause_of_death, handle. Подробнее по ссылке. Заявлена поддержка ограниченного набора NER для немецкого, испанского и китайского языков. Качество распознавания можно попробовать с помощью онлайн демо.

Поставка:
Java библиотека. Модели можно загрузить из мавен вместе с проектом.
Я нигде не нашел перечня и детального описания NER компонентов для языков отличных от английского. По ссылкам 1, 2 — приведены примеры процесса тренировки собственных NER компонентов для разных языков. Проще говоря, возможность использовать другие языки заявлена, но придется повозиться.

Плюсы:
Ощущение от работы с проектом в целом и с готовыми моделями самое позитивное, проект живет и развивается, качество распознавания хорошее (”хорошее” — понятие условное, существуют метрики, характеризующие качество распознавания NER компонентов, но данный вопрос выходит за рамки статьи).

Минусы:
Помимо некоторого хаоса с документаций, они небольшие. Кому это важно, обратите внимание на лицензию. GNU General Public License отличается от Apache, так, например, вы не можете добавить продукт с данной лицензией в продукты, лицензируемые под Apache и т. д.

Google Language API


Google language API для английского языка поддерживает следующий список сущностей: person, location, organization, event, work_of_art, consumer_good, other, phone_number, address, date, number, price.

Платформа:
REST API, SaaS. Доступны готовые клиентские библиотеки над REST (Java, C#, Python, Go и т. д.).

Плюсы:
Большой набор NER компонентов, развитие и качество обеспечивается всем известным интернет гигантом.

Минусы:
Начиная с определенных объемов, использование платное.

Spacy


Данная библиотека предоставляет один из наиболее широких наборов поддерживаемых для распознавания сущностей, по ссылке список поддерживаемых.

Платформа:
Python.

К сожалению отсутствие личного опыта промышленного использования не позволяет мне добавить реальное описание плюсов и минусов данной библиотеки. К тому же подробный обзор питоновских NLP решений уже опубликован на habr.

Все вышеперечисленные библиотеки позволяют обучать собственные модели. Также все из них (кроме Apache OpenNlp) позволяют извлекать нормализованные значения из найденных сущностей, то есть, например, получить число “173“ из найденной в запросе числовой сущности “сто семьдесят три“.

Как мы видим вариантов решения задачи нахождения именованных сущностей представлено множество, направление их развития очевидно — расширение списка поддерживаемых языков и набора распознаваемых сущностей, улучшение качества распознавания.

Ниже описано, что привнес проект Apache NlpCraft в данную, уже широко проработанную область.

Дополнительные возможности предоставляемые NlpCraft


  • Собственные NER компоненты для новых сущностей, улучшенные варианты решения для некоторых уже существующих.
  • Интеграция NER компонентов всех вышеперечисленных библиотек в рамках использования продукта.
  • Поддержка “составных сущностей“, что дает пользователям простую возможность создания новых собственных компонентов на основе уже имеющихся.

Теперь обо всем этом чуть подробнее.

Собственные NER компоненты


Собственные NER компоненты Apache NlpCraft — это компоненты распознавания дат, чисел, географии, координат, сортировки и сопоставления разных сущностей. Часть из них уникальна, часть — лишь улучшенная реализация существующих решений (повышена точность распознавания, добавлены дополнительные поля значений и т. д.).

Интеграция существующих решений


Все перечисленные выше решения интегрированы для использования в Apache NlpCraft.
При работе с проектом пользователю достаточно подключить нужный модуль и указать в конфигурации какие именно NER компоненты должны быть задействованы при поиске сущностей конкретной модели.

Ниже приведен пример конфигурации, для которой при поиске в тексте используется четыре различных NER компонента от двух провайдеров:

"enabledBuiltInTokens": [
   "nlpcraft:num",
   "nlpcraft:coordinate",
   "google:organization",
   "google:phone_number"
]

Подробнее об использовании Apache NlpCraft написано здесь. Для использования Google Language API необходим действующий Google developer account.

Поддержка составных сущностей


Поддержка составных сущностей — самая интересная из вышеперечисленных возможностей, остановимся на ней немного подробнее.

Составная сущность — это сущность определенная на основе другой. Рассмотрим пример. Пусть вы разрабатываете NLP систему управления, основанную на интентах (см. Alexa, Google Dialogflow, Алиса, Apache NlpСraft и т. д.), и пусть ваша модель работает с географией, но только для США. Вы можете взять любой компонент для поиска географии, например ”nlpcraft:city”, и использовать его напрямую.

Далее, при срабатывании интента, вы в соответствующей ему функции (callback), должны проверить значение поля ”country”, и если оно не удовлетворяет требуемым условиям, завершить работу функции, предотвращая ложное срабатывание. Далее вы должны вернуться к матчингу и попытаться выбрать другую, более подходящую функцию.

Что не так в данном подходе:
  • Вы значительно усложняете работу с вызываемыми функциями, передавая управление из них в основной рабочий поток и обратно. Кроме того стоит учесть, что подобным функционалом передачи управления обладают далеко не все диалоговые системы.
  • Вы размазываете логику матчинга между интентом и кодом исполняемого метода.

Хорошо… Вы можете с нуля создать свой собственный NER компонент по поиску американских городов, но эта задача решается не за пять минут.

Попробуем иначе. Вы можете усложнить интент (в тех системах где это возможно) и искать города, дополнительно отфильтрованные по стране. Но, повторюсь, возможность сложной фильтрации по полям элементов предоставляют далеко не все системы, кроме того вы усложняете интенты, которые должны быть максимально понятными и простыми, особенно если их много в проекте.

Apache NlpCraft предлагает механизм определения собственных NER компонентов на основе уже существующих. Ниже приведен пример конфигурации (полный синтаксис DSL доступен по ссылке, пример создания элементов — тут):

"elements": [
  {
    "id": "custom:city:usa",
    "description": "Wrapper for USA cities",
    "synonyms": [
      "^^id == 'nlpcraft:city' && lowercase(~city:country) == 'usa')^^"
    ]
  }
]

В данном примере мы описываем новую именованную сущность “американский город“ — “custom:city:usa”, основанную на уже существующей “nlpcraft:city”, отфильтрованной по определенному критерию.

Теперь вы можете создавать интенты, опирающиеся на созданный новый элемент, а встреченные в тексте города за пределами США не вызовут нежелательного срабатывания ваших интентов.

Еще пример:

"macros": [
  {
    "name": "<AIRPORT>",
    "macro": "{airport|aerodrome|airdrome|air station}"
  }
],
"elements": [
  {
    "id": "custom:airport:usa",
    "description": "Wrapper for USA airports",
    "synonyms": [
      "<AIRPORT> {of|for|*} ^^id == 'nlpcraft:city' && 
       lowercase(~city:country) == 'usa')^^"
    ]
  }
]

В данном примере мы определили именованную сущность “городской аэропорт в США“ — “custom:airport:usa”. При определении этого элемента мы не только отфильтровали города по признаку принадлежности к государству, но и задали дополнительное правило, по которому названию города должен предшествовать какой-либо синоним, определяющий понятие “аэропорт”. (Подробнее о создании синонимов элементов через макросы — тут).

Составные элементы могут быть определены с любой степенью вложенности, то есть при необходимости вы можете спроектировать новые элементы на базе только что созданного “custom:airport:usa”. Также обратите внимание на то, что все нормализованные значения родительских сущностей, в данном случае базового элемента “nlpcraft:city”, доступны также в элементе “custom:airport:usa”, и могут быть использованы в теле функции сработавшего интента.

Разумеется, “составные элементы“ можно определять не только для всех поддерживаемых стандартных компонентов от OpenNlp, Stanford, Google, Spacy и NlpCraft, но и для пользовательских NER компонентов, расширяя их возможности и позволяя переиспользовать уже имеющиеся программные наработки.

Обратите внимание, фактически вы не плодите новые компоненты для каждой новой задачи, а просто конфигурируете их или “подмешиваете” их функционал в собственные элементы.

Таким образом, используя “составные сущности“ разработчик может:

  • Значительно упростить логику построения интентов путем ее частичного переноса в переиспользуемые составные элементы.
  • С помощью изменений конфигурации получить NER компоненты с новым поведением без обучения моделей или кодирования.
  • Переиспользовать уже готовые решения с ожидаемым качеством, опираясь на существующие тесты или метрики.

Заключение


Надеюсь, что краткий обзор плюсов и минусов существующих NER компонентов будет полезен читателям, а понимание того, как с помощью Apache NlpCraft можно существенно расширить их возможности и адаптировать имеющиеся решения для новых задач, ускорит процесс разработки ваших проектов.
Теги:
Хабы:
Всего голосов 6: ↑6 и ↓0+6
Комментарии2

Публикации

Истории

Работа

Java разработчик
304 вакансии
Scala разработчик
11 вакансий

Ближайшие события

22 – 24 ноября
Хакатон «AgroCode Hack Genetics'24»
Онлайн
28 ноября
Конференция «TechRec: ITHR CAMPUS»
МоскваОнлайн
2 – 18 декабря
Yandex DataLens Festival 2024
МоскваОнлайн
11 – 13 декабря
Международная конференция по AI/ML «AI Journey»
МоскваОнлайн
25 – 26 апреля
IT-конференция Merge Tatarstan 2025
Казань