Обновить
0
@Oskarsonread⁠-⁠only

Пользователь

Отправить сообщение

Chatbot на нейронных сетях

Время на прочтение5 мин
Охват и читатели61K
Недавно набрел на такую статью. Как оказалось некая компания с говорящим названием «наносемантика» объявила конкурс русских чатботов помпезно назвав это «Тестом Тьюринга»». Лично я отношусь к подобным начинаниям отрицательно — чатбот — программа для имитации разговора — создание, как правило, не умное, основанное на заготовленных шаблонах, и соревнования их науку не двигают, зато шоу и внимание публики обеспечено. Создается почва для разных спекуляций про разумные компьютеры и великие прорывы в искусственном интеллекте, что крайне далеко от истины. Особенно в данном случае, когда принимаются только боты написанные на движке сопоставления шаблонов, причем самой компании «Наносемантика».

Впрочем, ругать других всегда легко, а вот сделать что-то работающее бывает не так просто. Мне стало любопытно, можно ли сделать чатбот не ручным заполнением шаблонов ответа, а с помощью обучения нейронной сети на образцах диалогов. Быстрый поиск в Интернете полезной информации не дал, поэтому я решил быстро сделать пару экспериментов и посмотреть что получится.
Читать дальше →

Автоматическая генерация осмысленных уникальных текстов

Время на прочтение6 мин
Охват и читатели96K
Каждый веб-оптимизатор знает, что для того чтобы сайт любили поисковики, он должен содержать уникальные тексты. Причем не абы какие наборы слов, а осмысленные предложения, желательно по теме сайта. Особо это проблема для агрегаторов, которые берут информацию с других сайтов, и интернет-магазинов, где параметры и данные о товарах в целом одинаковые. Поэтому стандартная практика в этой ситуации — заказывать уникальные тексты копирайтерам. Стоимость такого удовольствия от 50 до 300 руб. за 1000 знаков. Если на вашем сайте 10000 страниц, то уникальные тексты быстро становятся значительной статьей расхода.

В этой статье поговорим методах алгоритмической генерации текстов и расскажем о нашем опыте работы с ними.
Читать дальше →

Классификация русского текста с помощью библиотеки Natural на NodeJS

Время на прочтение3 мин
Охват и читатели18K
Преамбула


Я никого не удивлю, если скажу, что современный человек, а, в особенности, программист, каждый день получает огромное информации. К примеру, мой RSS-клиент выдает мне в неделю около 500 статей. И, конечно же, это далеко не единственный источник информации.

Я задумался над тем, чтобы сделать для себя RSS-клиент с обучаемым фильтром статей на NodeJS. В принципе, под ноду есть готовые RSS ридеры, есть готовые нейронные сети с классификаторами, так что написать какой-то прототип мне показалось не особенно сложной задачей.

Я решил начать с тестирования подвернувшихся под руку нейронных сетей. Я взял небольшое количество входных данных. Позитивные данные я скопировал из статей по nodejs с хабра. Негативные данные я нашел на «ленте.ру». Задача классификатора заключалась в том, чтобы отсортировать статьи о программировании и nodejs от обычных, безынтересных для моего развития, новостей.

Результаты работы с Brain и Fann я показывать не хочу — я не считаю, что я обладаю достаточной экспертизой для того, чтобы судить о них. Скажу только что из коробки они меня не устроили совершенно — на моих входных данных они не давали адекватного количества правильных ответов. А вот библиотека Natural меня очень впечатлила.

Далее я покажу как я обучал классификатор, проверял его работу и заставлял понимать русский язык.

Читать дальше →

Информация

В рейтинге
Не участвует
Зарегистрирован
Активность