треугольники [[B E F], [D E F]] соеденены по ребру, а [A C E1] соприкасается с ними только вершиной. То есть, окресность точки E уже не диск. Так бы да, оно б догенерилось без проблем
Я беру все треугольники в склейке и запихиваю все 3 ребра каждого треугольника в граф.И так пока не пройду все треугольники. Строится обычный неориентированный граф, если одно ребро добавить несколько раз, то это игнорируется.
для [[A B C], [A B D], [B C E], [C A F], [A D F], [D B F], [B E F]]
это AB BC CA | AB BD DA | BC CE EB | CA AF FC | AD DF FA | DB BF FD | BE EF FB |
в сухом остатке получается набор из 12 ребер AB BC AC BD AD CE BE AF CF DF BF EF по которым и строится граф.
то же и для остальных
Вот какие графы строятся по этим двум склейкам
для
[[A B C], [A B D], [B C E], [C A F], [A D F], [D B F], [B E F]]:
{ vertices: [5, 4, 3, 2, 1, 0], edges: [(4<-->5), (3<-->5), (2<-->5), (2<-->4), (1<-->5), (1<-->4), (1<-->3), (1<-->2), (0<-->5), (0<-->3), (0<-->2), (0<-->1)]}
список вершин и их грани
{5=[(5<-->4), (5<-->3), (5<-->2), (5<-->1), (5<-->0)],4=[(4<-->5), (4<-->2), (4<-->1)],3=[(3<-->5), (3<-->1), (3<-->0)],2=[(2<-->5), (2<-->4), (2<-->1), (2<-->0)],1=[(1<-->5), (1<-->4), (1<-->3), (1<-->2), (1<-->0)],0=[(0<-->5), (0<-->3), (0<-->2), (0<-->1)]}
Для
[[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C D]]
x(F)=-1 K=1 g=1.0 [[A B C], [A B D], [A C E], [A D F], [B C F], [B E F], [C D E], [D E F]]
которую не получить не только из всех семерок дописыванием одного треугольника
но и из всех шестерок дописывая два.
Получить её можно только отняв у всех семерок по 2 треугольника и догенерив 3. Почему просто не взять пятерки? Потому что в комбинациях «все семерки — 2 треугольника» есть такие, которых в пятерках нет.
Получается, надо с самого начала генерить не только правильные склейки, но и все неправильные. А это тоже дофига вариантов
сначала идут те, что уже в списке, справа — те что проверялись. Можно и графы вывести которые по ним получаются. Я просто либу юзую для java которая этим безобразием занимается, надо будет в ней покопаться
[[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C D]] — [[A B C], [A B D], [B C E], [C A F], [A D F], [D B F], [B E F]]
[[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C D]] — [[A B C], [A B D], [B C E], [C A D], [D B F], [B E F], [E C F]]
[[A B C], [A B D], [B C E], [C A F], [A D E], [E C D], [C F D]] — [[A B C], [A B D], [B C E], [C A D], [D B F], [E C F], [D F E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [B E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [E C I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [C F I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [F A I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [H E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [A H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [H G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [G D H], [G H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [G D H], [H D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F H], [G E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [G E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [F H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [H D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [B G H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [B G H], [H G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [E C G], [F D H], [E G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [D B F], [B E G], [F B H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [B E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [C F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [F A H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [B E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [E C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [F A G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [E F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A G], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [C D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [F B H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [G E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [E G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [G C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [G F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [F E G], [F G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [F E G], [G E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [D B F], [B E G], [F B H], [B G H]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [D B G], [E C D]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [B E G], [A E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [B E G], [E D G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C G], [A E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C G], [E D G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C D], [A E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C D]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [F A G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [B E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [E C F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E F], [F A E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E F], [E C F]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E G], [A G E]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E G], [G D E]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C G], [A G E]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C G], [G D E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [F A E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A G], [G D F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B F], [B F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [E C G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [C D F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [F B G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E F], [C D G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [F E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [A F G], [B F G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [A F G], [F E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [F D G], [F E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F G], [B G F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F G], [G E F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D G], [B G F]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D G], [G E F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [E C G], [F D G], [E G F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C F], [E D F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C D], [C F D]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C D]]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B F] [B E F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E F] [E C F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C F] [D F E]
минусы там, где склейка изоморфна какой нибудь другой
склейки
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [B E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [E C I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [C F I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [F A I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [H E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [A H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [H G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [G D H], [G H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [G D H], [H D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F H], [G E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [G E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [F H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [H D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [B G H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [B G H], [H G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [E C G], [F D H], [E G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [D B F], [B E G], [F B H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [B E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [C F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [F A H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [B E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [E C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [F A G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [E F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A G], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [C D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [F B H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [G E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [E G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [G C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [G F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [F E G], [F G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [F E G], [G E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [D B F], [B E G], [F B H], [B G H]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [D B G], [E C D]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [B E G], [A E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [B E G], [E D G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C G], [A E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C G], [E D G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C D], [A E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C D]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [F A G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [B E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [E C F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E F], [F A E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E F], [E C F]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E G], [A G E]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E G], [G D E]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C G], [A G E]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C G], [G D E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [F A E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A G], [G D F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B F], [B F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [E C G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [C D F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [F B G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E F], [C D G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [F E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [A F G], [B F G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [A F G], [F E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [F D G], [F E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F G], [B G F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F G], [G E F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D G], [B G F]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D G], [G E F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [E C G], [F D G], [E G F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C F], [E D F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C D], [C F D]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C D]]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B F] [B E F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E F] [E C F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C F] [D F E]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C F], [D F E]]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B H] [B E I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B H] [E C I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [C F I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [F A I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [A G I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [G D I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [B H I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [H E I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C H] [A G I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C H] [G D I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [F A H] [A G I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [F A H] [G D I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [A G H] [G D I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [A G H] [A H I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [A G H] [H G I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [G D H] [G H I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [G D H] [H D I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [A F H] [B G I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [A F H] [G E I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D H] [B G I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D H] [G E I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D H] [F H I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D H] [H D I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [B G H] [B H I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [B G H] [H G I]
— [A B C] [A B D] [B C E] [A D F] [E C G] [F D H] [E G I]
— [A B C] [A B D] [B C E] [D B F] [B E G] [F B H] [B G I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B H] [B E H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B H] [E C F]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [E C H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [C F H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [F A H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B G] [B E H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B G] [E C H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B G] [A G H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [F A G]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C F] [A G H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C F] [G D H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C F] [E F H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [F A H] [A G H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [F A G] [G D H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [A G H] [G D H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [C D H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [D F H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [F B H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [B G H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [G E H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C G] [D F H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C G] [E G H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C G] [G C H]
— [A B C] [A B D] [B C E] [C A D] [B E F] [B F G] [B G H]
— [A B C] [A B D] [B C E] [C A D] [B E F] [B F G] [G F H]
— [A B C] [A B D] [B C E] [C A D] [B E F] [F E G] [F G H]
— [A B C] [A B D] [B C E] [C A D] [B E F] [F E G] [G E H]
— [A B C] [A B D] [B C E] [D B F] [B E G] [F B H] [B G H]
— [A B C] [A B D] [B C E] [C A F] [A D E] [D B G] [E C D]
— [A B C] [A B D] [B C E] [C A F] [A D E] [B E G] [A E G]
— [A B C] [A B D] [B C E] [C A F] [A D E] [B E G] [E D G]
— [A B C] [A B D] [B C E] [C A F] [A D E] [E C G] [A E G]
— [A B C] [A B D] [B C E] [C A F] [A D E] [E C G] [E D G]
— [A B C] [A B D] [B C E] [C A F] [A D E] [E C D] [A E G]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [E C F]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [E C D]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [F A G]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B G] [B E G]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B G] [E C F]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E F] [F A E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E F] [E C F]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E G] [A G E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E G] [G D E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C G] [A G E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C G] [G D E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C F] [F A E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [F A G] [G D F]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B F] [B F G]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [E C G]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [C D F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [F B G]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E F] [C D G]
— [A B C] [A B D] [B C E] [C A D] [B E F] [B F G] [F E G]
— [A B C] [A B D] [B C E] [A D F] [B E F] [A F G] [B F G]
— [A B C] [A B D] [B C E] [A D F] [B E F] [A F G] [F E G]
— [A B C] [A B D] [B C E] [A D F] [B E F] [F D G] [F E G]
— [A B C] [A B D] [B C E] [A D F] [B E G] [A F G] [B G F]
— [A B C] [A B D] [B C E] [A D F] [B E G] [A F G] [G E F]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D G] [B G F]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D G] [G E F]
— [A B C] [A B D] [B C E] [A D F] [E C G] [F D G] [E G F]
— [A B C] [A B D] [B C E] [C A F] [A D E] [E C F] [E D F]
— [A B C] [A B D] [B C E] [C A F] [A D E] [E C D] [C F D]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B E] [E C F]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B E] [E C D]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B F] [B E F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E F] [E C F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C F] [D F E]
это почти половина…
Вот мои 92
склейки
N = 7
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C D F], [C E F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C D F], [C E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C D F], [C F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C E F], [C F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C E F], [D E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C E F], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E F], [C D G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E F], [C E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E F], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [B F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [B F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [C D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [C E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [C E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [E G H]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [C E F], [D E F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [C E G], [C G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [C E G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [C E G], [E G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [B F G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [B F G], [C E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [B F G], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [B F G], [E F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [B F G], [F G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [C E G], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [C E G], [E F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [E F G], [E G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [E F G], [F G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D F], [C E F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D F], [C E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D G], [B F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D G], [B F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D G], [C E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D G], [C F H]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B E F], [D E F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B F G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B F G], [C F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B F G], [D E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B F G], [F G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E F], [B C G], [B D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E F], [B C G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E F], [B C G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F G], [B C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F H], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F H], [B C I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F H], [C E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F H], [E G I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B C F], [C D F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B C H], [B D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B C H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B C H], [D F I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D E], [B E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D E], [C D E]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D E], [D E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D G], [B E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D G], [D E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D H], [C E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D H], [D F I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D H], [D H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D H], [E G I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D E F], [D E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D E F], [E F G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D F G], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D F H], [D H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D F H], [E G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D F H], [F H I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [B C F], [B D G], [C D F]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C F], [B F G], [D F G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [B C F], [C F G], [D F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [B D H], [C E I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [B F G], [D F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [B G H], [C E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [B G H], [D F I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [B G H], [G H I]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [C F G], [D F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [C G H], [D F I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [D F H], [D H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [D F H], [F H I]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C D G], [C E G], [D F G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [C E F], [D F G], [E F G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [C F G], [D F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [C G H], [D F I]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [D F G], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [D F H], [E G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [E G H], [E H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [E G H], [G H I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [B D F], [C E G], [D F G], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [B D F], [C E G], [D F H], [E G I]]
Total:92
Ops: 4529365776
Stopped at op:9827994 (0.217%)
Duration: 00:25:22
для семи (все) 92, для восьми 366.
Дальше я итеративным перебором получил для 9 1400, но не совсем уверен в этой цифре, может быть немного больше
Для 10 6377, так же на самом деле может быть немного больше
треугольники [[B E F], [D E F]] соеденены по ребру, а [A C E1] соприкасается с ними только вершиной. То есть, окресность точки E уже не диск. Так бы да, оно б догенерилось без проблем
Я беру все треугольники в склейке и запихиваю все 3 ребра каждого треугольника в граф.И так пока не пройду все треугольники. Строится обычный неориентированный граф, если одно ребро добавить несколько раз, то это игнорируется.
для [[A B C], [A B D], [B C E], [C A F], [A D F], [D B F], [B E F]]
это AB BC CA | AB BD DA | BC CE EB | CA AF FC | AD DF FA | DB BF FD | BE EF FB |
в сухом остатке получается набор из 12 ребер AB BC AC BD AD CE BE AF CF DF BF EF по которым и строится граф.
то же и для остальных
для
[[A B C], [A B D], [B C E], [C A F], [A D F], [D B F], [B E F]]:
{ vertices: [5, 4, 3, 2, 1, 0], edges: [(4<-->5), (3<-->5), (2<-->5), (2<-->4), (1<-->5), (1<-->4), (1<-->3), (1<-->2), (0<-->5), (0<-->3), (0<-->2), (0<-->1)]}
список вершин и их грани
{5=[(5<-->4), (5<-->3), (5<-->2), (5<-->1), (5<-->0)],4=[(4<-->5), (4<-->2), (4<-->1)],3=[(3<-->5), (3<-->1), (3<-->0)],2=[(2<-->5), (2<-->4), (2<-->1), (2<-->0)],1=[(1<-->5), (1<-->4), (1<-->3), (1<-->2), (1<-->0)],0=[(0<-->5), (0<-->3), (0<-->2), (0<-->1)]}
Для
[[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C D]]
{ vertices: [5, 4, 3, 2, 1, 0], edges: [(3<-->5), (3<-->4), (2<-->5), (2<-->4), (2<-->3), (1<-->4), (1<-->3), (1<-->2), (0<-->5), (0<-->3), (0<-->2), (0<-->1)]}
список вершин с гранями
{ vertices: [5, 4, 3, 2, 1, 0], edges: [(3<-->5), (3<-->4), (2<-->5), (2<-->4), (2<-->3), (1<-->4), (1<-->3), (1<-->2), (0<-->5), (0<-->3), (0<-->2), (0<-->1)]}
x(F)=-1 K=1 g=1.0 [[A B C], [A B D], [A C E], [A D F], [B C F], [B E F], [C D E], [D E F]]
которую не получить не только из всех семерок дописыванием одного треугольника
но и из всех шестерок дописывая два.
Получить её можно только отняв у всех семерок по 2 треугольника и догенерив 3. Почему просто не взять пятерки? Потому что в комбинациях «все семерки — 2 треугольника» есть такие, которых в пятерках нет.
Получается, надо с самого начала генерить не только правильные склейки, но и все неправильные. А это тоже дофига вариантов
[[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C D]] — [[A B C], [A B D], [B C E], [C A F], [A D F], [D B F], [B E F]]
[[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C D]] — [[A B C], [A B D], [B C E], [C A D], [D B F], [B E F], [E C F]]
[[A B C], [A B D], [B C E], [C A F], [A D E], [E C D], [C F D]] — [[A B C], [A B D], [B C E], [C A D], [D B F], [E C F], [D F E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [B E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [E C I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [C F I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [F A I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [H E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [A H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [H G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [G D H], [G H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [G D H], [H D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F H], [G E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [G E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [F H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [H D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [B G H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [B G H], [H G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [E C G], [F D H], [E G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [D B F], [B E G], [F B H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [B E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [C F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [F A H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [B E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [E C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [F A G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [E F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A G], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [C D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [F B H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [G E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [E G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [G C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [G F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [F E G], [F G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [F E G], [G E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [D B F], [B E G], [F B H], [B G H]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [D B G], [E C D]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [B E G], [A E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [B E G], [E D G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C G], [A E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C G], [E D G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C D], [A E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C D]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [F A G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [B E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [E C F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E F], [F A E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E F], [E C F]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E G], [A G E]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E G], [G D E]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C G], [A G E]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C G], [G D E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [F A E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A G], [G D F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B F], [B F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [E C G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [C D F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [F B G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E F], [C D G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [F E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [A F G], [B F G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [A F G], [F E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [F D G], [F E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F G], [B G F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F G], [G E F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D G], [B G F]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D G], [G E F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [E C G], [F D G], [E G F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C F], [E D F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C D], [C F D]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C D]]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B F] [B E F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E F] [E C F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C F] [D F E]
минусы там, где склейка изоморфна какой нибудь другой
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [E C I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [C F I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [F A I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [H E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [G D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [A H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [H G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [G D H], [G H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [G D H], [H D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F H], [G E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [G E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [F H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D H], [H D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [B G H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [B G H], [H G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [A D F], [E C G], [F D H], [E G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [D B F], [B E G], [F B H], [B G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [B E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B H], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [C F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [F A H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [B E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [E C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E H], [F A G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [E F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A H], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A G], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [A G H], [G D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [C D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [F B H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [G E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [E G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C G], [G C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [G F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [F E G], [F G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [F E G], [G E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [D B F], [B E G], [F B H], [B G H]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [D B G], [E C D]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [B E G], [A E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [B E G], [E D G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C G], [A E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C G], [E D G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C D], [A E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [E C D]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B E], [F A G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [B E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [D B G], [E C F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E F], [F A E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E F], [E C F]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E G], [A G E]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [B E G], [G D E]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C G], [A G E]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C G], [G D E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [E C F], [F A E]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D G], [F A G], [G D F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B F], [B F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [E C G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [C D F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E G], [F B G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [B E F], [C D G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A D], [B E F], [B F G], [F E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [A F G], [B F G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [A F G], [F E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E F], [F D G], [F E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F G], [B G F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [A F G], [G E F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D G], [B G F]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [B C E], [A D F], [B E G], [F D G], [G E F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [A D F], [E C G], [F D G], [E G F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C F], [E D F]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A F], [A D E], [E C D], [C F D]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [B C E], [C A F], [A D F], [D B E], [E C D]]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B F] [B E F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E F] [E C F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C F] [D F E]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [B C E], [C A D], [D B F], [E C F], [D F E]]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B H] [B E I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B H] [E C I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [C F I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [F A I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [A G I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [G D I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [B H I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [H E I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C H] [A G I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C H] [G D I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [F A H] [A G I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [F A H] [G D I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [A G H] [G D I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [A G H] [A H I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [A G H] [H G I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [G D H] [G H I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [G D H] [H D I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [A F H] [B G I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [A F H] [G E I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D H] [B G I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D H] [G E I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D H] [F H I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D H] [H D I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [B G H] [B H I]
— [A B C] [A B D] [B C E] [A D F] [B E G] [B G H] [H G I]
— [A B C] [A B D] [B C E] [A D F] [E C G] [F D H] [E G I]
— [A B C] [A B D] [B C E] [D B F] [B E G] [F B H] [B G I]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B H] [B E H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B H] [E C F]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [E C H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [C F H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [F A H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B G] [B E H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B G] [E C H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B G] [A G H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E H] [F A G]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C F] [A G H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C F] [G D H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C F] [E F H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [F A H] [A G H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [F A G] [G D H]
— [A B C] [A B D] [B C E] [C A F] [A D G] [A G H] [G D H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [C D H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [D F H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [F B H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [B G H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [G E H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C G] [D F H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C G] [E G H]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C G] [G C H]
— [A B C] [A B D] [B C E] [C A D] [B E F] [B F G] [B G H]
— [A B C] [A B D] [B C E] [C A D] [B E F] [B F G] [G F H]
— [A B C] [A B D] [B C E] [C A D] [B E F] [F E G] [F G H]
— [A B C] [A B D] [B C E] [C A D] [B E F] [F E G] [G E H]
— [A B C] [A B D] [B C E] [D B F] [B E G] [F B H] [B G H]
— [A B C] [A B D] [B C E] [C A F] [A D E] [D B G] [E C D]
— [A B C] [A B D] [B C E] [C A F] [A D E] [B E G] [A E G]
— [A B C] [A B D] [B C E] [C A F] [A D E] [B E G] [E D G]
— [A B C] [A B D] [B C E] [C A F] [A D E] [E C G] [A E G]
— [A B C] [A B D] [B C E] [C A F] [A D E] [E C G] [E D G]
— [A B C] [A B D] [B C E] [C A F] [A D E] [E C D] [A E G]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [E C F]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [E C D]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B E] [F A G]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B G] [B E G]
— [A B C] [A B D] [B C E] [C A F] [A D G] [D B G] [E C F]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E F] [F A E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E F] [E C F]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E G] [A G E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [B E G] [G D E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C G] [A G E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C G] [G D E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [E C F] [F A E]
— [A B C] [A B D] [B C E] [C A F] [A D G] [F A G] [G D F]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B F] [B F G]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [E C G]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [C D F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E G] [F B G]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E F] [C D G]
— [A B C] [A B D] [B C E] [C A D] [B E F] [B F G] [F E G]
— [A B C] [A B D] [B C E] [A D F] [B E F] [A F G] [B F G]
— [A B C] [A B D] [B C E] [A D F] [B E F] [A F G] [F E G]
— [A B C] [A B D] [B C E] [A D F] [B E F] [F D G] [F E G]
— [A B C] [A B D] [B C E] [A D F] [B E G] [A F G] [B G F]
— [A B C] [A B D] [B C E] [A D F] [B E G] [A F G] [G E F]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D G] [B G F]
— [A B C] [A B D] [B C E] [A D F] [B E G] [F D G] [G E F]
— [A B C] [A B D] [B C E] [A D F] [E C G] [F D G] [E G F]
— [A B C] [A B D] [B C E] [C A F] [A D E] [E C F] [E D F]
— [A B C] [A B D] [B C E] [C A F] [A D E] [E C D] [C F D]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B E] [E C F]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B E] [E C D]
— [A B C] [A B D] [B C E] [C A F] [A D F] [D B F] [B E F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [B E F] [E C F]
— [A B C] [A B D] [B C E] [C A D] [D B F] [E C F] [D F E]
это почти половина…
Вот мои 92
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C D F], [C E F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C D F], [C E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C D F], [C F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C E F], [C F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C E F], [D E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D E], [C E F], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E F], [C D G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E F], [C E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E F], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [B F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [B F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [C D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [C E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [C E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [B E G], [E G H]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [C E F], [D E F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [C E G], [C G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [C E G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B D F], [C E G], [E G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [B F G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [B F G], [C E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [B F G], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [B F G], [E F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [B F G], [F G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [C E G], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [C E G], [E F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [E F G], [E G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C D], [B C E], [B E F], [E F G], [F G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D F], [C E F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D F], [C E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D G], [B F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D G], [B F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D G], [C E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B D G], [C F H]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B E F], [D E F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B F G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B F G], [C F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B F G], [D E H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D E], [B C F], [B F G], [F G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E F], [B C G], [B D H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E F], [B C G], [B G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E F], [B C G], [D F H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F G], [B C H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F H], [A G H]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F H], [A G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F H], [B C I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F H], [C E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [A F H], [E G I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B C F], [C D F]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B C H], [B D I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B C H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B C H], [D F I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D E], [B E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D E], [C D E]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D E], [D E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D G], [B E G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D G], [D E G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D H], [B H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D H], [C E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D H], [D F I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D H], [D H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [B D H], [E G I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D E F], [D E G]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D E F], [E F G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D F G], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D F H], [D H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D F H], [E G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [A E G], [D F H], [F H I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [B C F], [B D G], [C D F]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C F], [B F G], [D F G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [B C F], [C F G], [D F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [B D H], [C E I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [B F G], [D F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [B G H], [C E I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [B G H], [D F I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [B G H], [G H I]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [C F G], [D F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [C G H], [D F I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [D F H], [D H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [B C G], [D F H], [F H I]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C D G], [C E G], [D F G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [C E F], [D F G], [E F G]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [C F G], [D F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [C G H], [D F I]]
x(F)=0 K=2 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [D F G], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [D F H], [E G I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [E G H], [E H I]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [A D F], [C E G], [E G H], [G H I]]
x(F)=0 K=1 m=1.0 [[A B C], [A B D], [A C E], [B D F], [C E G], [D F G], [E F G]]
x(F)=1 K=1 g=0.0 [[A B C], [A B D], [A C E], [B D F], [C E G], [D F H], [E G I]]
Total:92
Ops: 4529365776
Stopped at op:9827994 (0.217%)
Duration: 00:25:22
Дальше я итеративным перебором получил для 9 1400, но не совсем уверен в этой цифре, может быть немного больше
Для 10 6377, так же на самом деле может быть немного больше