Дропаем ранжирующие метрики в рекомендательной системе, часть 3: платформа для экспериментов

В прошлых частях статьи я описывала, как мы экспериментировали с рекомендательными моделями на датасете онлайн-кинотеатра Kion. Считали метрики, проводили визуальный анализ, диагностировали popularity bias и другие проблемы алгоритмов, строили двухэтапные модели.
Кроме онлайн приложения мы построили небольшую, но цельную платформу для экспериментов с рекомендательными моделями. Сегодня я подробно на ней остановлюсь:
- Расскажу о workflow экспериментов и пайплайнах обработки данных.
- О том, какие инструменты мы использовали для реализации платформы.
- Нарисую полную инфраструктуру проекта.
А также опишу, как мы построили эксперименты с кросс-валидацией скользящим окном для моделей, которые используют фичи, зависящие от времени. В том числе как мы сделали валидацию для двухэтапной модели с градиентным бустингом.
Будет много MLOps для RecSys.

