Методы сбора ансамблей алгоритмов машинного обучения: стекинг, бэггинг, бустинг

Ансамбль - это просто несколько алгоритмов машинного обучения, собранных в единое целое. Такой подход часто используется для того, чтобы усилить "положительные качества" отдельно взятых алгоритмов, которые сами по себе могут работать слабо, а вот в группе - ансамбле давать хороший результат. При использовании ансамблевых методов алгоритмы учатся одновременно и могут исправлять ошибки друг друга. Типичными примерами методов, направленных на объединение "слабых" учеников в группу сильных являются стекинг, бэггинг, бустинг, которые и будут рассмотрены далее.
