Хабр Курсы для всех
РЕКЛАМА
Практикум, Хекслет, SkyPro, авторские курсы — собрали всех и попросили скидки. Осталось выбрать!
Отличие, при беглом осмотре, в том что они пытаются притянуть к произвольному звуку привычные характеристики типа жанра, темпа, мелодичности, экспрессии и т.д. Я считаю это не совсем правильным, так как есть жанры где всё кроме ярлыка самого жанра, определить невозможно (Merzbow — Pulse Demon), но композиция тем не менее входит, пусть и на окраину общего звукового континуума, который можно наблюдать на моём скриншоте про Scatterplot собранной базы данных.
Насчёт попадание кусков из разных жанров в одном треке, для примера положим 40% металл, 60% мелодекламация голосом. Чаще всего это будет приводить к тому что в плейлисте будут находиться треки с такой же комбинацией — 40% металла и 60% декламации. Ну или с перекосом в ту или другую сторону, если точных совпадений найдено не будет.
Используйте всю выборку пользователя и на основе неё сделайте статистический вывод о процентном соотношении треков определённого вида (ок, вам не нравится слово «жанр») у пользователя. Дальше из глобальной БД сэмплов можно выбирать похожие треки и в таком же процентном отношении отдавать их пользователю.
Анализировались аналогичные решения от Apple, Google, Pandora Radio, Last.fm. Во всех случаях поиск ведётся по метаданным, что как минимум неспортивно, а как максимум, субьективно и подвержено мнениям живых оценщиков.
В отличие от них, HOLO пока является беспристрастным рецензентом и рекомендателем, системой «без учителя».
Во-вторых, content-based рекомендательные системы могут давать неплохое разнообразие и приятно удивить пользователя (diversity и serendipity), но они очень и очень сильно подвержены, скажем так, «упячкам». То есть периодически вы будете рекомендовать что-то очень и очень странное
Анализировались аналогичные решения от Apple, Google, Pandora Radio, Last.fm. Во всех случаях поиск ведётся по метаданным
HOLO — Система анализа музыки — Версия 2