— Атом состоит из ядра и электронов, которые находятся вокруг него.
— А что находится между ядром и электронами?
— Ну… Как что? Воздух!
Подобно атому, корпус микросхемы состоит в основном из В теории — да. А на практике?
1. Пилим поперёк
Грегори Дейвилл (Gregory Davill) решил собрать простейший RFID-эмулятор на микроконтроллере MSP430G2211, но ему не давал покоя большой размер корпуса (DIP-14). Конечно, можно было бы взять корпус помельче, или, на худой конец, выбрать другую модель контроллера, но это же не и��тересно! Поэтому Грег пошел другим путем, и, взяв дремель, отпилил по куску корпуса с двух сторон:
В результате семейство MSP430 пополнилось новой — шестиногой — моделью.

Кристалл не был задет, так что МК остался полностью рабочим, не считая потери восьми «лишних» выводов. Но погодите, выводы питания теперь тоже отрезаны! Как же он будет работать? В обычной схеме — не будет, а здесь используется один интересный хак. Данная RFID-метка состоит всего из двух деталей: контроллера и катушки.

Контроллер получает питание от переменной ЭДС, наведенной в катушке полем считывателя. Напряжение выпрямляется встроенными защитными диодами, по паре которых «висит» на каждом выводе контроллера, и поступает на внутренние шины питания.


Тактовый сигнал снимается с той же катушки. Таким образом, все выводы, кроме двух, оказываются не нужны, и их можно безбоязненно отрезать (разумеется, залить прошивку необходимо заранее). Этот трюк также будет работать с контроллерами PIC и AVR.
Источник
2. Пилим вдоль
Контроллер LPC1114 — на сегодняшний день единственный ARM в «дружелюбном» корпусе DIP. Его легко паять новичкам, его можно воткнуть в макетную плату без переходников. Радость омрачает только большая ширина корпуса — 600 mil (15,24 мм). Японец под ником TheAxid9999 смог допилить этот контроллер до вдвое меньшей ширины (300 mil).Просто прямыми руками и шлифмашиной тут уже не обойтись, поэтому контроллер зафиксировали на столе фрезерного станка…

… и за несколько проходов спилили по 150 mil с каждой из боковых сторон. Вместе с ногами.

Теперь, чтобы подключиться к кристаллу, необходимо добраться до металлических дорожек, идущих в теле корпуса. На том же станке, снимая по доле миллиметра за проход, аккуратно отфрезеровали две канавки, обнажив слой с дорожками, но не повредив последние.

Самое сложное позади. Теперь к контроллеру можно припаять новые выводы, сделанные из двух разъемов-гребёнок.

Чтобы всю конструкцию можно было вынуть из платы, не боясь разломать, ее залили эпоксидным полимером. После застываения полимера снова отфрезеровали для придания ровной формы.

Вот так выглядит результат в сравнении с нетронутым корпусом. Ширина сократилась вдвое, правда ценой увеличения толщины.

Видеоинструкция:
Источник (на японском)
Заключение
Помимо «вдоль» и «поперек», остался нерассмотренным еще один способ пилить микросхемы: горизонтально. В отличие от первых двух способов, горизонтальное спиливание является не бесполезной забавой, а вполне серьезным инструментом. Его используют, чтобы получить доступ к кристаллу для:- Работы с микросхемой, у которой оборваны соединения кристалла с выводами;
- Извлечения защищенных данных, например, залоченной прошивки;
- Реверс-инжениринга.
Ну а методы, описанные в данной статье, разумеется, не имеют никакого практического применения и рассматриваются исключительно как «Just for fun». Все современные микросхемы выпускаются в миниатюрных корпусах, и если важны габариты, достаточно выбрать подходящее исполнение, а не заниматься художественной резьбой по DIP-корпусам.
