Идея бросать за корму атомные бомбы в проекте «Орион» оказалась слишком брутальной, но объемы энергии, которые дает реакция ядерного расщепления, не говоря уже о синтезе, крайне привлекательны для космонавтики. Поэтому было создано множество не-импульсных систем, избавленных от проблем с хранением сотен ядерных бомб на борту и циклопических амортизаторов. О них сегодня мы и поговорим.

Ядерная физика на пальцах



Что такое ядерная реакция? Если объяснять очень просто, картина будет примерно следующая. Из школьной программы мы помним, что вещество состоит из молекул, молекулы из атомов, а атомы — из протонов, электронов и нейтронов (есть уровни ниже, но нам хватит и этого). Некоторые тяжелые атомы имеют интересное свойство — если в них попадает нейтрон, они распадаются на более легкие атомы и выпускают несколько нейтронов. Если эти выпущенные нейтроны попадут в находящиеся рядом другие тяжелые атомы, распад повторится, и мы получим цепную ядерную реакцию. Движение нейтронов с большой скоростью означает, что это движение превращается в тепло при замедлении нейтронов. Поэтому атомный реактор — это очень мощный нагреватель. Им можно кипятить воду, полученный пар направить на турбину, и получить атомную электростанцию. А можно нагревать водород и выбрасывать его наружу, получив ядерный реактивный двигатель. Из этой идеи родились первые двигатели — NERVA и РД-0410.

NERVA


История проекта

Формальное авторство (патент) на изобретение атомного ракетного двигателя принадлежит Ричарду Фейнману, согласно его же мемуарам «Вы, конечно же шутите, мистер Фейнман». Книга, кстати, всячески рекомендуется к прочтению. Лос-Аламосская лаборатория стала разрабатывать ядерные ракетные двигатели в 1952 году. В 1955 году Был начат проект Rover. На первом этапе проекта, KIWI, было построено 8 экспериментальных реакторов и с 1959 по 1964 год изучалась продувка рабочего тела сквозь активную зону реактора. Для временнОй привязки, проект «Орион» существовал с 1958 по 1965 год. У «Ровера» были второй и третий этапы, изучавшие реакторы большей мощности, но NERVA базировалась на Kiwi из-за планов первого испытательного пуска в космосе в 1964 году. Сроки постепенно съехали, и первый наземный пуск двигателя NERVA NRX/EST (EST — Engine System Test — тест двигательной системы) состоялся в 1966 году. Двигатель успешно проработал два часа, из которых 28 минут составила работа на полной тяге. Второй двигатель NERVA XE был запущен 28 раз и проработал в общей сложности 115 минут. Двигатель был признан пригодным для космической техники, а испытательный стед был готов к испытаниям новых собранных двигателей. Казалось, что NERVA ждет блестящее будущее — полёт на Марс в 1978, постоянная база на Луне в 1981, орбитальные буксиры. Но успех проекта вызвал панику в Конгрессе — лунная программа оказалась очень дорогой для США, марсианская программа оказалась бы ещё дороже. В 1969 и 1970 годах финансирование космоса серьезно сокращалось — были отменены «Аполлоны»-18,19 и 20, и огромные объемы денег на марсианскую программу никто бы не стал выделять. В итоге работа по проекту велась без серьезной подпитки деньгами и в итоге он был закрыт в 1972 году.

Конструкция



Водород из бака поступал в реактор, нагревался там, и выбрасывался наружу, создавая реактивную тягу. Водород был выбран как рабочее тело потому, что у него легкие атомы, и их проще разогнать до большой скорости. Чем больше скорость реактивного выхлопа — тем эффективнее ракетный двигатель.
Отражатель нейтронов использовался для того, чтобы нейтроны возвращались обратно в реактор для поддержания цепной ядерной реакции.
Управляющие стержни использовались для управления реактором. Каждый такой стержень состоял из двух половин — отражателя и поглотителя нейтронов. Когда стержень поворачивался отражателем нейтронов, их поток в реакторе увеличивался и реактор повышал теплоотдачу. Когда стержень поворачивался поглотителем нейтронов, их поток в реакторе уменьшался, и реактор понижал теплоотдачу.
Водород также использовался для охлаждения сопла, а теплый водород от системы охлаждения сопла вращал турбонасос для подачи новых порций водорода.


Двигатель в работе. Водород поджигался специально на выходе из сопла во избежание угрозы взрыва, в космосе горения бы не было.

Двигатель NERVA создавал тягу 34 тонны, примерно в полтора раза меньше двигателя J-2, стоявшего на второй и третьей ступенях ракеты «Сатурн-V». Удельный импульс составлял 800-900 секунд, что было в два раза больше лучших двигателей на топливной паре «кислород-водород», но меньше ЭРД или двигателя «Ориона».

Немного о безопасности

Только что собранный и не запущенный ядерный реактор с новыми, ещё не работавшими топливными сборками достаточно чист. Уран ядовит, поэтому необходимо работать в перчатках, но не более. Никаких дистанционных манипуляторов, свинцовых стен и прочего не нужно. Вся излучающая грязь появляется уже после запуска реактора из-за разлетающихся нейтронов, «портящих» атомы корпуса, теплоносителя и т.п. Поэтому, в случае аварии ракеты с таким двигателем радиационное заражение атмосферы и поверхности было бы небольшим, и конечно же, было бы сильно меньше штатного старта «Ориона». В случае же успешного старта заражение было бы минимальным или вообще отсутствовало, потому что двигатель должен был бы запускаться в верхних слоях атмосферы или уже в космосе.

РД-0410




Советский двигатель РД-0410 имеет похожую историю. Идея двигателя родилась в конце 40-х годов среди пионеров ракетной и ядерной техники. Как и в проекте Rover первоначальной идеей была атомный воздушно-реактивный двигатель для первой ступени баллистической ракеты, затем разработка перешла в космическую отрасль. РД-0410 разрабатывался медленнее, отечественные разработчики увлеклись идеей газофазного ЯРД (об этом будет ниже). Проект был начат в 1966 году и продолжался до середины 80-х годов. В качестве цели для двигателя называлась миссия «Марс-94» — пилотируемый полёт на Марс в 1994 году.
Схема РД-0410 аналогична NERVA — водород проходит через сопло и отражатели, охлаждая их, подается в активную зону реактора, нагревается там и выбрасывается.
По своим характеристикам РД-0410 был лучше NERVA — температура активной зоны реактора составляла 3000 К вместо 2000 К у NERVA, а удельный импульс превышал 900 с. РД-0410 был легче и компактней NERVA и развивал тягу в десять раз меньше.


Испытания двигателя. Боковой факел слева внизу поджигает водород во избежание взрыва.

Развитие твердофазных ЯРД


Мы помним, что чем выше температура в реакторе, тем больше скорость истечения рабочего тела и тем выше удельный импульс двигателя. Что мешает повысить температуру в NERVA или РД-0410? Дело в том, что в обоих двигателях тепловыделяющие элементы находятся в твердом состоянии. Если повысить температуру, они расплавятся и вылетят наружу вместе с водородом. Поэтому для бОльших температур необходимо придумать какой-то другой способ осуществления цепной ядерной реакции.

Двигатель на солях ядерного топлива

В ядерной физике есть такое понятие как критическая масса. Вспомните цепную ядерную реакцию в начале поста. Если делящиеся атомы находятся очень близко друг к другу (например, их обжали давлением от специального взрыва), то получится атомный взрыв — очень много тепла в очень небольшие сроки. Если атомы обжаты не так плотно, но поток новых нейтронов от деления растет, получится тепловой взрыв. Обычный реактор в таких условиях выйдет из строя. А теперь представим, что мы берем водный раствор делящегося материала (например, солей урана) и подаем их непрерывно в камеру сгорания, обеспечивая там массу больше критической. Получится непрерывно горящая ядерная «свечка», тепло от которой разгоняет прореагировавшее ядерное топливо и воду.



Идея была предложена в 1991 году Робертом Зубриным и, по различным подсчетам, обещает удельный импульс от 1300 до 6700 с при тяге, измеряющейся тоннами. К сожалению, подобная схема имеет и недостатки:
  • Сложность хранения топлива — необходимо избегать цепной реакции в баке, размещая топливо, например, в тонких трубках из поглотителя нейтронов, поэтому баки будут сложными, тяжелыми и дорогими.
  • Большой расход ядерного топлива — дело в том, что КПД реакции (количество распавшихся/количество потраченных атомов) будет очень низким. Даже в атомной бомбе делящийся материал «сгорает» не полностью, тут же бОльшая часть ценного ядерного топлива будет выбрасываться впустую.
  • Наземные тесты практически невозможны — выхлоп такого двигателя будет очень грязным, грязнее даже «Ориона».
  • Есть некоторые вопросы насчет контроля ядерной реакции — не факт, что простая в словесном описании схема будет легкой в технической реализации.


Газофазные ЯРД


Следующая идея — а что, если мы создадим вихрь рабочего тела, в центре которого будет идти ядерная реакция? В этом случае высокая температура активной зоны не будет доходить до стенок, поглощаясь рабочим телом, и её можно будет поднять до десятков тысяч градусов. Так родилась идея газофазного ЯРД открытого цикла:



Газофазный ЯРД обещает удельный импульс до 3000-5000 секунд. В СССР был начат проект газофазного ЯРД (РД-600), но он не дошёл даже до стадии макета.
«Открытый цикл» означает, что ядерное топливо будет выбрасываться наружу, что, конечно, снижает КПД. Поэтому была придумана следующая идея, диалектически вернувшаяся к твердофазным ЯРД — давайте окружим область ядерной реакции достаточно термостойким веществом, которое будет пропускать излучаемое тепло. В качестве такого вещества предложили кварц, потому что при десятках тысяч градусов тепло передается излучением и материал контейнера должен быть прозрачным. Получился газофазный ЯРД закрытого цикла, или же «ядерная лампочка»:



В этом случае ограничением для температуры активной зоны будет термическая прочность оболочки «лампочки». Температура плавления кварца 1700 градусов Цельсия, с активным охлаждением температуру можно повысить, но, в любом случае, удельный импульс будет ниже открытой схемы (1300-1500 с), но ядерное топливо будет расходоваться экономней, и выхлоп будет чище.

Альтернативные проекты


Кроме развития твердофазных ЯРД есть и оригинальные проекты.

Двигатель на делящихся фрагментах

Идея этого двигателя заключается в отсутствии рабочего тела — им служит выбрасываемое отработанное ядерное топливо. В первом случае из делящихся материалов делаются подкритические диски, которые не запускают цепную реакцию сами по себе. Но если диск поместить в реакторную зону с отражателями нейтронов, запустится цепная реакция. А вращение диска и отсутствие рабочего тела приведет к тому, что распавшиеся высокоэнергетические атомы улетят в сопло, генерируя тягу, а не распавшиеся атомы останутся на диске и получат шанс при следующем обороте диска:



Ещё более интересная идея состоит в создании пылевой плазмы (вспомним «плазменный кристалл» на МКС) из делящихся материалов, в которой продукты распада наночастиц ядерного топлива ионизируются электрическим полем и выбрасываются наружу, создавая тягу:



Обещают фантастический удельный импульс в 1 000 000 секунд. Энтузиазм охлаждает тот факт, что разработка находится на уровне теоретических изысканий.

Двигатели на ядерном синтезе

В ещё более отдаленной перспективе создание двигателей на ядерном синтезе. В отличие от реакций распада ядер, где атомные реакторы были созданы почти одновременно с бомбой, термоядерные реакторы до сих пор не передвинулись из «завтра» в «сегодня» и использовать реакции синтеза можно только в стиле «Ориона» — бросаясь термоядерными бомбами.

Ядерная фотонная ракета

Теоретически можно разогреть активную зону до такой степени, что тягу можно будет создавать, отражая фотоны. ��есмотря на отсутствие технических ограничений, подобные двигатели на текущем уровне технологии невыгодны — тяга будет слишком маленькой.

Радиоизотопная ракета

Вполне рабочим будет ракета, нагревающая рабочее тело от РИТЭГа. Но РИТЭГ выделяет сравнительно мало тепла, поэтому такой двигатель будет очень малоэффективным, хотя и очень простым.

Заключение


На текущем уровне технологии можно собрать твердотельный ЯРД в стиле NERVA или РД-0410 — технологии освоены. Но такой двигатель будет проигрывать связке «атомный реактор+ЭРД» по удельному импульсу, выигрывая по тяге. А более продвинутые варианты есть пока только на бумаге. Поэтому лично мне более перспективной кажется связка «реактор+ЭРД».

Источники информации


Главный источник информации — английская Википедия и ресурсы, указанные в ней как ссылки. Как ни парадоксально, но любопытные статьи по ЯРД есть на Традиции — твердофазный ЯРД и газофазный ЯРД. Статья про двигатели на делящихся фрагментах и пылевой плазме.