Введение
Думаю, что многие из читателей видели хотя бы один ролик на популярных видеосервисах, где электричество передается через пустое пространство при помощи индуктивных катушек.
В этой статье мы хотим обратиться к первоосновам процесса беспроводной передачи энергии с помощью магнитного поля. Начав с рассмотрения простейшей индуктивной катушки, и вычисления ее индуктивности, мы постепенно перейдем к теории электрических цепей, в рамках которой, будет показан и обоснован способ передачи максимальной мощности при прочих равных условиях. Итак, начнем.
Магнитное поле одиночного витка с током
Рассмотрим магнитное поле одиночного витка с током. Найдем магнитное поле витка в любой точке пространства. Почему необходимо подобное рассмотрение? Потому что почти во всех книгах, по крайней мере в тех, которые удалось отыскать автору статьи, решение данной задачи ограничивается нахождением лишь одной компоненты магнитного поля и лишь вдоль оси витка —
Иллюстрация к закону Био-Савара-Лапласа
Для нахождения магнитного поля, воспользуемся законом Био-Савара-Лапласа (смотри Википедия — Закон Био-Савара-Лапласа). На рисунке видно, что центр системы координат
Согласно закону Био-Савара-Лапласа, элемент контура с током
Теперь остановимся подробнее на переменных и выражениях, входящих в формулу. С учетом аксиальной симметрии задачи можем записать
Для того чтобы найти результирующее магнитное поле, нужно проинтегрировать по всему контуру витка, то есть
После подстановки всех выражений и некоторых тождественных преобразований получаем выражения для аксиальной и радиальной компоненты магнитного поля соответственно
Для нахождения абсолютного значения магнитного поля необходимо просуммировать компоненты по теореме Пифагора
Продемонстрируем полученное решение на примере витка радиуса
Амплитуда аксиальной компоненты магнитного поля
Амплитуда радиальной компоненты магнитного поля
Абсолютная амплитуда магнитного поля
Заметим, что для витка произвольной формы, на больших расстояниях
Подсказка...
Для подобных вычислений и построения графиков удобно использовать MathCad 15
Катушка индуктивности. Магнитно-связанные катушки
Теперь, когда мы знаем решение для магнитного поля одного витка, можем найти индуктивность катушки, состоящей из
Индуктивно связанные катушки
На рисунке изображены две магнитно связанные катушки. Пусть первая катушка имеет радиус
Поскольку в катушке много витков, найдем величину, называемую потокосцепление, дважды умножив на количество витков
По определению, индуктивность это коэффициент пропорциональности
Пусть центры катушек разделены расстоянием
Тогда взаимная индуктивность катушек дается выражением
Насколько известно автору, такие интегралы можно взять только численно.
Заметим, что как правило
Исследуем зависимость коэффициента связи катушек от расстояния. Для этого рассмотрим две одинаковые катушки с радиусом витков
Коэффициент связи катушек от расстояния между ними
График не изменится, если одинаково изменить число витков в обеих катушках, либо одинаково изменить радиус обеих катушек. Коэффициент связи удобно выражать в процентах. Из графика видно, что даже при расстоянии между катушками в 1 (мм) коэффицент связи меньше 100%. Коэффициент падает до 10% на расстоянии порядка 60 (мм), и до 1% на 250 (мм).
Беспроводная передача энергии
Итак, нам известны индуктивности и коэффициент связи. Теперь воспользуемся теорией электрических цепей переменного тока для поиска оптимальных параметров, при которых передаваемая мощность оказалась бы максимальной. Для понимания этого параграфа читатель должен быть знаком с понятием электрического импеданса, а также с законами Кирхгофа и законом Ома. Как известно из теории цепей, две индуктивно-связанные катушки образуют воздушный трансформатор. Для анализа трансформаторов удобна Т-образная схема замещения.
Воздушный трансформатор и его эквивалентная схема
Передающую катушку слева будем условно называть «трасмиттер», а принимающую катушку справа — «ресивер». Между катушками коэффициент связи
Предполагается, что на вход схемы подается синусоидальное напряжение
Обозначим
С другой стороны, согласно нашим обозначениям
где
Импеданс связи равен
Найдем входной ток цепи
где знак
И наведенный ток
Можем найти комплексную мощность, переданную в ресивер
Таким образом имеем выражение для комплексной мощности
Выражение для активной компоненты мощности
Выражение для реактивной компоненты мощности
В большинстве практических задач требуется передать максимальную активную мощность, поэтому
Либо, что то же самое
Для удобства введем функцию
и исследуем ее на наличие экстремумов
Откуда получаем систему из двух уравнений
Эта система имеет пять решений, два из которых нефизичны, так как приводят к мнимым значениям величин, которым полагается быть действительными. Три других физических решения приведены ниже вместе с соответствующими формулами для мощности
Решение 1
Мощность
Решение 2 и 3
Мощность для решений 2 и 3
Решение 2 и 3 нужно использовать, когда реактивное сопротивление связи достаточно велико
Когда же это не так, нужно использовать решение 1. Чаще всего в реальных ситуациях
Решение 1:
Из формулы мощности видно, что мощность зависит от реактивного сопротивления связи
Как заметили внимательные читатели, зависимость
Исследование формулы мощности
Максимальная активная мощность при
Таким образом, вышеозначенная формула представляет абсолютный теоретический предел переданной активной мощности при любых условиях. При этом для реактивной мощности, переданной в ресивер, имеем
Численное моделирование
Продемонстрировать работу всей вышеизложенной теории можно, выполнив симуляцию SPICE модели нашего устройства из двух связанных катушек.
SPICE модель двух индуктивно-связанных катушек
Симуляция выполнена для коэффициента связи
Получается, что реактивные сопротивления каждой из катушек необходимо скомпенсировать конденсаторами
Ниже приведены два графика для переданного напряжения и переданной мощности во времени на частоте

Переданное напряжение

Переданная мощность
Из рисунков видно, что на расстоянии 25 (см) переданное напряжение оказалось приблизительно в 2.5 меньше входного, а переданная пиковая мощность — приблизительно в 4 раза меньше мощности, потребляемой от входа, что согласуется с полученными формулами.
В заключении опишем, какие меры можно предпринять для увеличения передаваемой мощности:
- увеличить количество витков в катушках
- увеличить радиус витков
- увеличить частоту передачи
- уменьшить расстояние между катушками
- ввести магнитный сердечник, принадлежащий обеим катушкам (замкнутый либо открытый)
- ввести незамкнутый магнитный сердечник, принадлежащий лишь катушке-ресиверу
Пожалуй, написание этой статьи накладывает на автора обязательство изготовить и протестировать такую систему из двух катушек в лабораторных условиях, но это уже совсем другая история. Благодарю за внимание.
Литература
- Сивухин, Д. В. «Общий курс физики. Т. 3: Электричество и магнетизм.» (1990).
- Бессонов, Лев Алексеевич. Теоретические основы электротехники. Электромагнитное поле. Общество с ограниченной ответственностью Издательство ЮРАЙТ, 2012.
- Лаврентьев, М. А., and Б. В. Шабат. «Теория функций комплексной переменной.» (1972).