Хабр Курсы для всех
РЕКЛАМА
Практикум, Хекслет, SkyPro, авторские курсы — собрали всех и попросили скидки. Осталось выбрать!
Очевидно, что: 2 + 2 + 2 = 3 + 3 и 2 + 2 > 3, 2 < 3. Таким образом, пары чисел распределены следующим образом:
Теперь попробуем его упорядочить. То есть найти способ найти следующую пару чисел n и m, зная предыдущую
во множестве степеней двойки «порядок» находиться очень просто, а во множестве простых чисел — нет.
Взяв за основу произвольные простые числа, мы меняем задачу разложения составного числа на множители на задачу разложения практически произвольного иррационального числа на сумму двух других из заданного множества. Что-то мне подсказывает, что это задача должна относиться к классу NP.
Теорема Лагранжа: Число представляется в виде бесконечной периодической цепной дроби тогда и только тогда, когда оно является иррациональным решением квадратного уравнения с целыми коэффициентами.Да, для алгебраических иррациональных чисел все может быть вполне хорошо. Мне хотелось бы рассматривать преимущественно трансцендентные числа. Например, все логарифмы от натуральных чисел являются трансцендентными числами или целыми, конечно.
Может "хаотичность" следует из меры иррациональности? Чем выше значение, тем больше хаотичность.
О взаимосвязи простых и иррациональных чисел