Как стать автором
Обновить
78.12
ITSumma
Эксперты в производительности

Соединяя лучшее из двух миров: как мы построили мост между Spark и Greenplum в ITSumma

Уровень сложностиСредний
Время на прочтение4 мин
Количество просмотров2.7K

В этой статье ведущий администратор баз данных ITSumma Алексей Пономаревский расскажет о том, как мы интегрировали популярный фреймворк для распределенной обработки данных Apache Spark с мощной массивно-параллельной базой данных Greenplum.

Текст будет полезен для разработчиков, решающих схожие задачи по интеграции распределенных фреймворков обработки с реляционными БД, которые используют параллельные вычисления.

Коротко о чем статья:

  1. Зачем нужно было создавать коннектор для взаимодействия между Spark и Greenplum.

  2. Как проходила разработка коннектора: архитектура и этапы.

  3. Дальнейшее развитие и оптимизация решения.

  4. Best Practices  в разработке подобных решений.

Статья сделана из доклада Алексея на нашем вебинаре, посмотреть его можно тут.

Необходимость создания коннектора

Apache Spark из коробки предоставляет ряд коннекторов для взаимодействия с различными источниками данных, включая реляционные БД, через интерфейс JDBC. Такое обобщенное решение ограничивает производительность и масштабируемость, так как обмен данными происходит через один ведущий узел кластера Spark, не задействуя параллельные вычисления на всех узлах.

Поэтому, чтобы обеспечить эффективное распределенное взаимодействие между Spark и Greenplum, требуется специализированный коннектор, который сможет в полной мере использовать возможности массово-параллельных вычислений обеих систем. Разработка такого коннектора была вызвана потребностями в высокопроизводительной передаче данных между Spark и Greenplum, и нашим желанием создать решение с открытым исходным кодом и полным контролем над внутренней реализацией.

Архитектура и этапы разработки

Эффективный параллельный обмен данными между распределенными системами, такими как Spark и Greenplum, является достаточно сложной инженерной задачей. Помимо координации и синхронизации работы множества узлов в кластерах, необходимо обеспечить поддержку транзакционности, присущей Greenplum как ACID-совместимой базе данных. Это требует применения механизмов буферизации данных и двухфазной фиксации транзакций.

Первоначально мы рассчитывали использовать некоторые встроенные средства и библиотеки Spark, но выяснилось, что для создания полноценного коннектора этого будет недостаточно. Поэтому был принят двухэтапный план разработки:

1. Создание собственного инструментария и базовой функциональности параллельного обмена данными.

2. Дальнейшее развитие и оптимизация решения, в том числе улучшение пропускной способности и снижение задержек.

На первом этапе были разработаны следующие ключевые компоненты:

  • Классы для синхронизации и координации взаимодействия узлов Spark (master и slave) на основе механизма удаленного вызова процедур RMI.

  • Средства обмена данными между узлами поверх того же RMI.

  • Компоненты для эффективной буферизации передаваемых данных, использующие подход "zero-copy". Была создана специальная реализация коллекций и событийной модели в Java.

  • Классы для преобразования формата данных между представлением в Spark, в сетевом протоколе и в Greenplum.

В результате был получен базовый работоспособный коннектор, обеспечивающий параллельный обмен данными с возможностью масштабирования как в кластере Spark, так и на стороне Greenplum. При этом пропускная способность на один сегмент Greenplum увеличилась с изначальных 2-5 МБ/с до 10 МБ/с и более.

Дальнейшее развитие и оптимизация

Получив функциональный коннектор на базе собственного инструментария, мы стали анализировать производительность и искать возможностей для ее повышения. Применили принцип оценки "идеальности" алгоритма по доле времени, которое он проводит в режиме ожидания завершения ввода-вывода.

Анализ показал, что узким местом, препятствующим росту скорости передачи данных, является сериализация и десериализация данных между внутренними форматами Spark, Greenplum и сетевым протоколом. Эти операции являются затратными по времени для CPU, не позволяя в полной мере задействовать пропускную способность сети и дисковой подсистемы.

Для снижения этих накладных расходов мы выработали два подхода:

1. Увеличение количества CPU-ядер, выделяемых на каждый executor Spark, либо общего числа задействованных executor'ов. Это позволило повысить скорость сериализации и десериализации в 1.5-2 раза.

2. Исключение промежуточных этапов преобразования данных путем передачи их в родном бинарном формате сериализации Java вместо текстового представления. Это потребует внесения изменений на стороне Greenplum, в частности, поддержки Protocol Buffers и использования расширения PXF.

По нашим оценкам, эти оптимизации позволят дополнительно повысить пропускную способность коннектора в несколько раз, достигнув величин порядка 50 МБ/с на сегмент Greenplum. Дальнейший рост может быть нецелесообразен, так как он начнет оказывать негативное влияние на работу других пользователей и чрезмерно увеличивать нагрузку базы данных.

Факторы, которые помогли успешно разработать решение

Разработка эффективных механизмов обмена данными между гетерогенными распределенными системами — это нетривиальная и сложная инженерная задача. Вот что поможет с ней эффективно справиться:

  • Глубокое понимание архитектуры и особенностей взаимодействующих систем, как на уровне концепций, так и протоколов, форматов данных и практик разработки.

  • Создание максимально универсального инструментария, не привязанного жестко к конкретным используемым средам и фреймворкам. Такой подход позволяет в дальнейшем использовать наработки для других сочетаний систем.

  • Применение правильных критериев и метрик, которые выявят узкие места производительности на всех этапах обработки и передачи данных.

  • Стремление обеспечить максимально возможного параллелизма, балансировки нагрузки и минимизации копирования данных между компонентами.

Дальнейшее развитие open-source коннектора между Spark и Greenplum видится в повышении его базовой производительности и масштабируемости, и в реализации дополнительных возможностей, специфичных для этих систем.

Ссылка на репозиторий с примерами использования коннектора: https://github.com/itsumma/spark-greenplum-connectorhttps://github.com/itsumma/spark-greenplum-connector

Теги:
Хабы:
Всего голосов 21: ↑21 и ↓0+23
Комментарии11

Публикации

Информация

Сайт
www.itsumma.ru
Дата регистрации
Дата основания
Численность
101–200 человек
Местоположение
Россия
Представитель
ITSumma