Разбираемся, что такое мультиагентность LLM (large language model или большие языковые модели) или коллективный искусственный разум.
Один человек не может быть экспертом во всех областях, поэтому для решения сложных задач необходима команда специалистов. Этот же принцип применим и в сфере ИИ, где большие языковые модели объединяются в мультиагентные LLM. Каждый агент в них выполняет свою уникальную роль. Как же это работает?
Пользователь ставит высокоуровневую задачу, которая разделятся системой на несколько подзадач. Затем подзадачи распределяются между несколькими агентами LLM согласно их специализации. Чтобы из-за разделения ролей не выпадал общий контекст исходной задачи и важные детали, в процессе работы агенты обмениваются решениями между собой.
Существуют различные варианты организации их взаимодействия: централизованная, децентрализованная и иерархическая.
У мультиагентности есть и обратная сторона: высокое потребление ресурсов, сложность координации агентов, риск несогласованности результатов и увеличенная сложность отладки.
Однако именно мультиагентные LLM способны решать сложные задачи, обеспечивая гибкость и масштабируемость системы. Преимущества мультиагентных LLM перевешивают их недостатки и делают «коллективный искусственный разум» перспективным направлением.