Эксперимент провели специалисты из Бристольского университета. Новая технология поспособствует развитию квантовых компьютеров на кремниевых схемах. Рассказываем, как устроена их система. Также рассмотрим несколько сторонних проектов, связанных с квантовой телепортацией.
Фото — Steve Jurvetson — CC BY / Фото изменено
Квантовая телепортация — это процесс, подразумевающий перенос квантового состояния на расстояние при помощи запутанных фотонов. Они разрушаются в точке отправления и воссоздаются в точке приема. В перспективе эту особенность можно использовать для передачи информации.
Но в конце прошлого года их коллеги из Бристоля усовершенствовали технологию и первыми в мире телепортировали фотон между микросхемами. Это достижение — еще один шаг к разработке квантовых сетей и компьютеров на кремниевых чипах.
Она построена на нелинейных источниках фотонов и линейных квантовых схемах. Физики использовали миниатюрные передатчики и приёмники размером не более пяти миллиметров.
Сам процесс телепортации проходит в несколько этапов:
Специалисты Бристольского университета также провели эксперимент с четырьмя источниками и продемонстрировали состояние Гринбергера — Хорне — Целлингера (стр.3). Оно характеризуется квантовой запутанностью системы минимум из трех кубитов.
Степень совпадения квантовых состояний при их переносе с чипа на чип составила 88,5%. Цифра сопоставима с аналогичным показателем для телепортации на одной микросхеме (стр.4). Такой точности достаточно, чтобы эффективно передавать информацию по оптоволоконным каналам. Но для реализации отказоустойчивого квантового компьютера, этот параметр должен достигнуть планки в 99%. Команда физиков отмечает, что продолжит исследования в этом направлении.
Летом прошлого года инженеры из Йокогамского государственного университета в Японии провели телепортацию частицы света внутри алмаза. Используя микро- и радиоволны, исследователи связали спин электрона с ядерным спином углерода. Затем в систему ввели фотон – электрон сразу его поглотил и передал информацию о нем второй частице. По сути, инженерам удалось сформировать миниатюрный квантовый повторитель для развертки сетей.
В августе 2019-го китайские ученые успешно телепортировали кутрит — ячейку с тремя возможными состояниями. Для этого они собрали сложную оптическую систему из лазеров, лучевых делителей и кристаллов бората бария. Примерно в то же время аналогичный эксперимент провела интернациональная команда исследователей во главе с австрийским физиком Антоном Цейлингером (Anton Zeilinger).
Фото — Donald Giannatti — Unsplash
Ряд специалистов ведет разработки, связанные с телепортацией фотонов в космосе. Одним из первых в 2016 году такой спутник запустил Китай. С помощью лазера он передал кубит на расстояние 1200 километров — с орбиты на принимающую станцию в Тибете.
Подобные технологии открывают путь к развертке глобальных квантовых сетей. Возможно, уже в ближайшем будущем они позволят объединить привычные нам компьютеры с квантовыми машинами на кремниевых компонентах.
Мы в 1cloud.ru предлагаем услугу «Виртуальный сервер». Вы можете поднять удаленный VDS/VPS-сервер всего за две минуты. Новым клиентам — бесплатное тестирование.
Мы используем оборудование enterprise-класса от Cisco, Dell, NetApp. Виртуализация построена на гипервизоре VMware vSphere.
Фото — Steve Jurvetson — CC BY / Фото изменено
В чем суть технологии
Квантовая телепортация — это процесс, подразумевающий перенос квантового состояния на расстояние при помощи запутанных фотонов. Они разрушаются в точке отправления и воссоздаются в точке приема. В перспективе эту особенность можно использовать для передачи информации.
Первой перенос частицы в пределах одного кремниевого чипа — на 6 мм — произвела группа физиков из Швейцарской высшей технической школы Цюриха (ETH Zurich) в 2013-м.
Но в конце прошлого года их коллеги из Бристоля усовершенствовали технологию и первыми в мире телепортировали фотон между микросхемами. Это достижение — еще один шаг к разработке квантовых сетей и компьютеров на кремниевых чипах.
Как это работает
Она построена на нелинейных источниках фотонов и линейных квантовых схемах. Физики использовали миниатюрные передатчики и приёмники размером не более пяти миллиметров.
Сам процесс телепортации проходит в несколько этапов:
- Источник генерирует две пары запутанных фотонов.
- Они поступают в специальную схему, после прохождения которой их параметры измеряются и считываются сетью интерферометров Маха — Цендера.
- Один фотон отправляют к приемнику, установленному на другой микросхеме, по оптоволокну. Там его параметры вновь измеряются интерферометрами.
Специалисты Бристольского университета также провели эксперимент с четырьмя источниками и продемонстрировали состояние Гринбергера — Хорне — Целлингера (стр.3). Оно характеризуется квантовой запутанностью системы минимум из трех кубитов.
Степень совпадения квантовых состояний при их переносе с чипа на чип составила 88,5%. Цифра сопоставима с аналогичным показателем для телепортации на одной микросхеме (стр.4). Такой точности достаточно, чтобы эффективно передавать информацию по оптоволоконным каналам. Но для реализации отказоустойчивого квантового компьютера, этот параметр должен достигнуть планки в 99%. Команда физиков отмечает, что продолжит исследования в этом направлении.
Другие эксперименты
Летом прошлого года инженеры из Йокогамского государственного университета в Японии провели телепортацию частицы света внутри алмаза. Используя микро- и радиоволны, исследователи связали спин электрона с ядерным спином углерода. Затем в систему ввели фотон – электрон сразу его поглотил и передал информацию о нем второй частице. По сути, инженерам удалось сформировать миниатюрный квантовый повторитель для развертки сетей.
В августе 2019-го китайские ученые успешно телепортировали кутрит — ячейку с тремя возможными состояниями. Для этого они собрали сложную оптическую систему из лазеров, лучевых делителей и кристаллов бората бария. Примерно в то же время аналогичный эксперимент провела интернациональная команда исследователей во главе с австрийским физиком Антоном Цейлингером (Anton Zeilinger).
Фото — Donald Giannatti — Unsplash
Ряд специалистов ведет разработки, связанные с телепортацией фотонов в космосе. Одним из первых в 2016 году такой спутник запустил Китай. С помощью лазера он передал кубит на расстояние 1200 километров — с орбиты на принимающую станцию в Тибете.
Подобные технологии открывают путь к развертке глобальных квантовых сетей. Возможно, уже в ближайшем будущем они позволят объединить привычные нам компьютеры с квантовыми машинами на кремниевых компонентах.
Мы в 1cloud.ru предлагаем услугу «Виртуальный сервер». Вы можете поднять удаленный VDS/VPS-сервер всего за две минуты. Новым клиентам — бесплатное тестирование.
Мы используем оборудование enterprise-класса от Cisco, Dell, NetApp. Виртуализация построена на гипервизоре VMware vSphere.