Идентификация пользователя по голосу

Продолжая тему распознавания голоса, хочу поделится своей старой дипломной работой, на которую одно время возлагал надежды по доведению до коммерческого продукта, но потом оставил этот проект, выложив его в сеть на радость другим студентам. Хотя возможно эта тема будет интересна не только в академическом ключе, а и для общего развития.

Тема моей дипломной работы была «Разработка подсистемы САПР защиты от несанкционированного доступа на основе нейросетевого анализа спектральных характеристик голоса». В самом дипломе конечно много воды вроде ТБ, экономики и прочего, но есть и математическая и практическая часть, а также анализ существующих аналогичных решений. В конце выложу программу и сам диплом, возможно еще кому-то пригодится.

Итак, зачем вообще это нужно?
Основным способом персонификации пользователя является указание его сетевого имени и пароля. Опасности, связанные с использованием пароля, хорошо известны: пароли забывают, хранят в неподходящем месте, наконец, их могут просто украсть. Некоторые пользователи записывают пароль на бумаге и держат эти записи рядом со своими рабочими станциями. Как сообщают группы информационных технологий многих компаний, большая часть звонков в службу поддержки связана с забытыми или утратившими силу паролями.

Метод работы существующих систем.
Большинство биометрических систем безопасности функционируют следующим образом: в базе данных системы хранится цифровой отпечаток пальца, радужной оболочки глаза или голоса. Человек, собирающийся получить доступ к компьютерной сети, с помощью микрофона, сканера отпечатков пальцев или других устройств вводит информацию о себе в систему. Поступившие данные сравниваются с образцом, хранимым в базе данных.

При распознавании образца проводится процесс, первым шагом которого является первоначальное трансформирование вводимой информации для сокращения обрабатываемого объема так, чтобы ее можно было бы подвергнуть анализу. Следующим этапом является спектральное представление речи, получившееся путем преобразования Фурье. Спектральное представление достигнуто путем использования широко-частотного анализа записи.

Хотя спектральное представление речи очень полезно, необходимо помнить, что изучаемый сигнал весьма разнообразен.
Разнообразие возникает по многим причинам, включая:
— различия человеческих голосов;
— уровень речи говорящего;
— вариации в произношении;
— нормальное варьирование движения артикуляторов (языка, губ, челюсти, нёба).

Затем определяются конечные выходные параметры для варьирования голоса и производится нормализация для составления шкалы параметров, а также для определения ситуационного уровня речи. Вышеописанные измененные параметры используются затем для создания шаблона. Шаблон включается в словарь, который характеризует произнесение звуков при передаче информации говорящим, использующим эту систему. Далее в процессе распознавания новых речевых образцов (уже подвергшихся нормализации и получивших свои параметры), эти образцы сравниваются с шаблонами, уже имеющимися в базе, используя динамичное искажение и похожие метрические измерения.

Возможность использования нейросетей для построения системы распознавания речи
Любой речевой сигнал можно представить как вектор в каком-либо параметрическом пространстве, затем этот вектор может быть запомнен в нейросети. Одна из моделей нейросети, обучающаяся без учителя – это самоорганизующаяся карта признаков Кохонена. В ней для множества входных сигналов формируется нейронные ансамбли, представляющие эти сигналы. Этот алгоритм обладает способностью к статистическому усреднению, т.е. решается проблема с вариативностью речи. Как и многие другие нейросетевые алгоритмы, он осуществляет параллельную обработку информации, т.е. одновременно работают все нейроны. Тем самым решается проблема со скоростью распознавания – обычно время работы нейросети составляет несколько итераций.

Практическая работа используемого алгоритма

Процесс сравнивания образцов состоит из следующих стадий:
— фильтрация шумов;
— спектральное преобразование сигнала;
— постфильтрация спектра;
— лифтеринг;
— наложение окна Кайзера;
— сравнение.

Фильтрация шумов
Звук, образованный колебаниями всего диапазона частот, подобный тому, спектр которого показан на рисунке, называется шумом.


Для того чтобы получить четкие спектральные характеристики звука их нужно отчистить от лишних шумов.
Входной дискретный звуковой сигнал обрабатывается фильтрами, для того чтобы избавится от помех возникающих при записи по формуле.

где Xi – набор дискретных значений звукового сигнала.
После обработки в сигнале ищется начало и конец записи, а так как шумы уже отфильтрованы, то начало фрагмента будет характеризоваться всплеском сигнала, если искать с Х0. Соответственно если искать с Хn вниз, то всплеск будет характеризовать конец фрагмента. Таким образом получим начала и конца фрагмента в массиве дискретных значений сигнала. В нематематическом виде это означает, что мы нашли слово сказанное пользователем в микрофон, которое нужно усреднить с другими характеристиками голоса.
Помимо высоты тона человек ощущает и другую характеристику звука — громкость. Физические величины, наиболее точно соответствующие громкости, — это шоковое давление (для звуков в воздухе) и амплитуда (для цифрового или электронного представления звука).

Если говорить об оцифрованном сигнале, то амплитуда — это значение выборки. Анализируя миллионы дискретных значений уровня одного и того же звука, можно сказать о пиковой амплитуде, то есть об абсолютной величине максимального из полученных дискретных значений уровня звука. Чтобы избежать искажения, вызванного искажением ограничения сигнала при цифровой записи звука (данное искажение возникает в том случае, если величина пиковой амплитуды выходит за границы, определяемые форматом хранения данных), необходимо обратить внимание на величину пиковой амплитуды. При этом нужно сохранять отношение сигнал/шум на максимально достижимом уровне.
Основной причиной разной громкости звуков является различное давление, оказываемое ими на уши. Можно сказать, что волны давления обладают различными уровнями мощности. Волны, несущие большую мощность, с большей силой оказывают воздействие на механизм ушей. Электрические сигналы, идущие по проводам, также передают мощность. По проводам звук обычно передается в виде переменного напряжения, и мгновенная мощность этого звука пропорциональна квадрату напряжения. Чтобы определить полную мощность за период времени, необходимо просуммировать все значения моментальной мощности за этот период.
На языке математики это описывается интегралом , где — это напряжение в заданный момент времени.

Поскольку вы используете звук, представленный дискретными значениями, вам не понадобится брать интеграл. Достаточно просто сложить квадраты отсчетов. Среднее значение квадратов дискретных значений пропорционально средней мощности.

Так как моментальная мощность зависит от квадрата моментальной амплитуды, имеет смысл аналогичным образом подобрать похожее соотношение, связывающее среднюю амплитуду и среднюю мощность. Способ, которым это можно сделать, заключается в определении средней амплитуды (СКЗ). Вместо того, чтобы вычислять среднее значение непосредственно амплитуды, мы сначала возводим в квадрат полученные значения, вычисляем среднее значение получившегося множества, а затем извлекаем из него корень. Метод СКЗ применяется в том случае, когда необходимо вычислить среднее для быстро меняющейся величины. Алгебраически это выражается следующим ооразом: пусть у нас N значений и х(i) это амплитуда i-ого дискретного значения. Тогда СКЗ амплитуды =

Мощность пропорциональна возведенной в квадрат величине дискретного значения. Это означает, что для перехода к реальной мощности, эту величину необходимо умножить на некоторый коэффициент. Для этого не требуются точные данные электрической мощности, так что, на самом деле, нас не интересуют точные числа, скорее относительная мощность.

Относительная мощность измеряется в белах, а чаще в децибелах (дБ, децибел, это одна десятая бела). Чтобы сравнить два звука, берется отношение их мощности. Десятичный логарифм этого отношения и есть различие в белах; если множить получившееся число на десять, то получится значение в децибелах. Например, если мощность одного сигнала превосходит мощность другого в два раза, то первый сигнал будет громче на 10lоg10(2) = 3,01 дБ.

Спектральное преобразование сигнала

Поскольку любой звук раскладывается на синусоидальные волны, мы можем построить частотный спектр звука. Спектр частот звуковой волны представляет собой график зависимости амплитуды от частоты.

Фазовые изменения часто происходят по причине временных задержек. Например, каждый цикл сигнала в 1000 Гц занимает 1/1000 секунды. Если задержать сигнал на 1/2000 секунды (полупериод), то получится 180-градусный сдвиг но фазе. Заметим, что этот эффект опирается на зависимость между частотой и временной задержкой. Если сигнал в 250 Гц задержать на те же самые 1/2000 секунды, то будет реализован 45-градусный сдвиг по фазе.

Если сложить вместе две синусоидальные волны одинаковой частоты, то получится новая синусоидальная волна той же частоты. Это будет верно даже в том случае, если два исходных сигнала имеют разные амплитуды и фазы. Например, Asin(2 Pi ft) и Bcos(2 Pi ft) две синусоиды с разными амплитудами и фазами, но I c одинаковой частотой.

Для измерения амплитуды одной частоты нужно умножить имеющийся сигнал на синусоиду той же частоты и сложить полученные отсчеты.
Чтобы записать это в символьном виде, предположим, что отсчеты имеют значения s0, s1, …, st, …. Переменная t представляет собой номер отсчета (который заменяет значение времени). Измеряется амплитуду частоты f в первом приближении, при вычислении следующей суммы:

Значения t и f не соответствуют в точности времени и частоте. Более того, f – целое число, а реальная исследуемая частота – это частота дискретизации, умноженная на f/N. Подобным образом, t — это целочисленный номер отсчета. Кроме того, суммирование дает не непосредственное значение амплитуды, а всего лишь число, пропорциональное амплитуде.

Если повторить эти вычисления для различных значений f, то можно измерить амплитуду всех частот в сигнале. Для любого целого f меньшего N легко определяется значение Аf, представляющее амплитуду соответствующей частоты как долю от общего сигнала. Эти значения могут быть вычислены по той же формуле:


Если мы знаем значения Af мы можем восстановить отсчеты. Для восстановления сигнала необходимо сложить все значения для разных частот. Чтобы осуществлять точное обратное преобразование Фурье, помимо амплитуды и частоты необходимо измерять фазу каждой частоты.

Для этого нужны комплексные числа. Можно изменить описанный ранее метод вычислений так, что он будет давать двумерный результат. Простое коми1 лексное число – это двумерное значение, поэтому оно одновременно но представляет и амплитуду, и фазу.
При таком подходе фазовая часть вычисляется неявно. Вместо амплитуды и фазы измеряется две амплитуды, соответствующие разным фазам. Одна из этих фаз представляется косинусом (соs()), другая синусом sin()).
Используя комплексные числа, можно проводить измерения одновременно, умножая синусную часть на -i.

Каждое значение Af теперь представляется комплексным числом; действительная и мнимая части задают амплитуду двух синусоидальных волн с разным фазами.

Основная идея быстрого преобразования Фурье заключается в том, что каждую вторую выборку можно использовать для получения половинного спектра. Формально это означает, что формула дискретного преобразования Фурье может быть представлена в виде двух сумм. Первая содержит все четные компоненты оригинала, вторая — все нечетные


Фильтрация спектра.
Получив спектральное представление сигнала его требуется отчистить от шумов. Человеческий голос обладает известными характеристиками, и поэтому те области которые не могут являются характеристиками голоса нужно погасить. Для этого применим функцию, которая получила название «окно Кайзера»
окно Кайзера
окно Кайзера
После фильтрации спектра наложим окно Ханнинга
окно Кайзера

Сравнение с эталонными образцами в базе
Основным параметром, используемым для идентификации, является мера сходства двух звуковых фрагментов. Для ее вычисления необходимо сравнить спектрограммы этих фрагментов. При этом сначала сравниваются спектры, полученные в отдельном окне, а затем вычисленные значения усредняются.

Для сравнения двух фрагментов использовался следующий подход:
Предположим что X[1..N] и Y[1..N] массивы чисел, одинакового размера N, содержащие значения спектральной мощности первого и второго фрагментов соответственно. Тогда мера сходства между ними вычисляется по следующей формуле:

где Mx и My математические ожидания для массивов X[] и Y[] соответственно, вычисляющиеся по следующей формуле:

Данный способ вычисления меры сходства двух фрагментов представленных в виде спектра является самым оптимальным для задачи идентификации человека по его голосу.

Нейросетевое сравнение на основе простых персептронов

Несмотря на большое разнообразие вариантов нейронных сетей, все они имеют общие черты. Так, все они, так же, как и мозг человека, состоят из большого числа связанных между собой однотипных элементов – нейронов, которые имитируют нейроны головного мозга. На рисунке показана схема нейрона.
схема нейрона
Из рисунка видно, что искусственный нейрон, так же, как и живой, состоит из синапсов, связывающих входы нейрона с ядром; ядра нейрона, которое осуществляет обработку входных сигналов и аксона, который связывает нейрон с нейронами следующего слоя. Каждый синапс имеет вес, который определяет, насколько соответствующий вход нейрона влияет на его состояние. Состояние нейрона определяется по формуле

где n – число входов нейрона, xi – значение i-го входа нейрона, wi – вес i-го синапса
Затем определяется значение аксона нейрона по формуле: Y = f(S) где f – некоторая функция, которая называется активационной. Наиболее часто в качестве активационной функции используется так называемый сигмоид, который имеет следующий вид:

Основное достоинство этой функции в том, что она дифференцируема на всей оси абсцисс и имеет очень простую производную:

При уменьшении параметра α сигмоид становится более пологим, вырождаясь в горизонтальную линию на уровне 0,5 при α=0. При увеличении a сигмоид все больше приближается к функции единичного скачка.

Обучение сети
Для автоматического функционирования системы был выбран метод обучения сети без учителя. Обучение без учителя является намного более правдоподобной моделью обучения в биологической системе. Развитая Кохоненом и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы.
Персептрон обучают, подавая множество образов по одному на его вход и подстраивая веса до тех пор, пока для всех образов не будет достигнут требуемый выход. Допустим, что входные образы нанесены на демонстрационные карты. Каждая карта разбита на квадраты и от каждого квадрата на персептрон подается вход. Если в квадрате имеется линия, то от него подается единица, в противном случае ноль. Множество квадратов на карте задает, таким образом, множество нулей и единиц, которое и подается на входы персептрона. Цель состоит в том, чтобы научить персептрон включать индикатор при подаче на него множества входов, задающих нечетное число, и не включать в случае четного.
Для обучения сети образ X подается на вход и вычисляется выход У. Если У правилен, то ничего не меняется. Однако если выход неправилен, то веса, присоединенные к входам, усиливающим ошибочный результат, модифицируются, чтобы уменьшить ошибку.
Информативность различных частей спектра неодинакова: в низкочастотной области содержится больше информации, чем в высокочастотной. Поэтому для предотвращения излишнего расходования входов нейросети необходимо уменьшить число элементов, получающих информацию с высокочастотной области, или, что тоже самое, сжать высокочастотную область спектра в пространстве частот.
Наиболее распространенный метод — логарифмическое сжатие

где f — частота в спектре Гц, m — частота в новом сжатом частотном пространстве

Такое преобразование имеет смысл только если число элементов на входе нейросети NI меньше числа элементов спектра NS.
После нормирования и сжатия спектр накладывается на вход нейросети. Вход нейросети — это линейно упорядоченный массив элементов, которым присваиваются уровни соответствующих частот в спектре. Эти элементы не выполняют никаких решающих функций, а только передают сигналы дальше в нейросеть. Выбор числа входов — сложная задача, потому что при малом размере входного вектора возможна потеря важной для распознавания информации, а при большом существенно повышается сложность вычислений ( при моделировании на PC, в реальных нейросетях это неверно, т.к. все элементы работают параллельно ).
При большой разрешающей способности (числе) входов возможно выделение гармонической структуры речи и как следствие определение высоты голоса. При малой разрешающей способности (числе) входов возможно только определение формантной структуры.

Как показало дальнейшее исследование этой проблемы, для распознавания уже достаточно только информации о формантной структуре. Фактически, человек одинаково распознает нормальную голосовую речь и шепот, хотя в последнем отсутствует голосовой источник. Голосовой источник дает дополнительную информацию в виде интонации (высоты тона на протяжении высказывания ), и эта информация очень важна на высших уровнях обработки речи. Но в первом приближении можно ограничиться только получением формантной структуры, и для этого с учетом сжатия неинформативной части спектра достаточное число входов выбрано в пределах 50~100.
Наложение спектра на каждый входной элемент происходит путем усреднения данных из некоторой окрестности, центром которой является проекция положения этого элемента в векторе входов на вектор спектра. Радиус окрестности выбирается таким, чтобы окрестности соседних элементов перекрывались. Этот прием часто используется при растяжении векторов, предотвращая выпадение данных.

Тестирование алгоритма
Тестирование производилось с 8 пользователями. Каждый голос сначала сравнивался с эталонным, то есть голосом разработчика, а потом между собой, для того что бы выяснить как поведет себя система на однотипных голосах.
При тестировании использовались 6 мужских голосов и 2 женских. Схожесть голосов определяется в процентах, поэтому требовалось выяснить максимально возможный порог совпадения. Эталонный голос использовался мужской, поэтому для тестирования использовалось большое количество именно мужских голосов. При тестирование произносилась одна и та же кодовая фраза, которую я за много прошедших лет уже и не помню…

Графики спектральных характеристик визуально различаются достаточно сильно, но положение пиков у них абсолютно одинаковое. Именно поэтому на одинаковых фразах даже пользователь с похожим голосом не сможет добиться такой схожести. На его характеристике положение этих пиков совпадать не будет. Так же на спектрограммах видно что произносились фразы по разному, первый образец был самых отчетливый, второй был сказан с некоторым отдалении от микрофона, третий произнесен шепотом. Это должно было сильно усложнить задачу. Но как видно из графиков их спектральные характеристики оказались схожими.

Тестирование проводилось на очень слабой звуковой карте интегрированной в материнскую плату. Карточка с высоким уровнем шума и игнорированием высоких и низких частот. А также со слабым микрофоном, не обеспечивающим необходимый уровень записи. С хорошей звуковой подсистемой, можно добиться значительно лучших результатов.

Диалог добавления пользователя в систему


Анализатор голоса


Тестер работы алгоритма анализа спектра


Оригинал моих статей по ссылке, здесь самую малость переработано.
Скачать текст диплома, чертежи, программу с исходниками
Поделиться публикацией

Комментарии 29

    +1
    Как раз занимаюсь вопросом практической безопасности (точнее, опасности) авторизации по голосу.
    Спасибо за материал, очень ценно!
      +1
      Рад помочь.
      +12
      image
      И никто не пошутит про «Добавочный — три шестьдесят две»? :)
        0
        Отлично, сам юзаю вайвлет и метод отпечатков, а до кохонена никак руки не доходили. Спасибо, относительно просто отписали).
          0
          Скажите, а кроме голоса, будет ли Ваш метод анализировать другие звуковые шаблоны (скажем машинные звуки, или хлопки/щелчки например)?
            0
            Может. У меня даже были планы распознавать фонемы с целью распознавания речи. Но понял, что это одному не потянуть.
            0
            Я так понимаю, система никак не защищена от подделки в виде звучащего из динамика записанного голоса?
              0
              Если динамик будет выдавать голос на тех же частотах, что и оригинал, то никак.
                0
                ЕМНИП то спектаральная характеристика человеческого голоса гораздо шире, чем в спектральная характеристика частоп воспроизводимых динамиком. Чтобы добиться удовлетворительного результата, нужен оочень качественный динамик. Плюс учитывайте что микрофон вносит в искажения при усилении, соответственно усиление и так искаженного звука динамиком будет весьма отличаться от естесственного голоса. В принципе можно всем этим делом пренебречь и взять сферический динамик в вакууме, тогда xtelekom абсолютно прав и отличий не будет.
                  +2
                  ЕМНИП то спектаральная характеристика человеческого голоса гораздо шире, чем в спектральная характеристика частоп воспроизводимых динамиком.

                  Стоп, как же это? Самая обычная звуковая система способна воспроизводить частоты от 50 Гц до 18 кГЦ, тогда как спектр человеческой речи лежит в пределах от 100 до 300 Гц. Или я чего-то не понял?
                    0
                    Я не правильно выразился. Хм, я имел ввиду то что спектры человеческого голоса, да и вообще звуков воспринимаемых человеком гораздо насыщенее нежели спектры воспроизводимые динамиками, пусть у них хоть от 6Гц до 25кГц. Плюс учитывайте тот момент что прежде чем воспроизвести необходимо этот сигнал закодировать. Хорошо, предположим что мы взяли один из популярных lossless форматов и воспроизводим закодированный звук с точностью до бита. Но, точность до бита позволяет добится вам максимальной отдачи при воспроизведение звука у когорого была качественная цифровая обработка с достаточным уровнем дискретизации. А если нет, то все это воспроизведение опять таки будет с искажениями. Проблема состоит в качественной оцифровке голоса, и выделении его составляющих из общего фона.
                      0
                      Качественная оцифровка стоит дорого, поэтому для массового продукта нужно вводить погрешность рассчитанную на микрофоны в ноутбуках и вебкамерах.
                      Иначе в требованиях к программе нужно указывать конкретные модели микрофонов с которыми ПО протестировано и выдаст предсказуемый результат.
                +4
                Идентификация по биометрикам — зло:

                — Зачастую слабая защищенность от replay атак
                — Нет возможности «сменить пароль» при его компрометации
                  0
                  Поэтому я и забросил проект
                    0
                    Возможно вы в курсе, как же тогда лучше идентифицировать?
                      +1
                      Если биометрия, то отпечаток пальца или еще лучше сетчатка глаза
                        +2
                        В мифбастерсах показывали, как легко обходятся все датчики отпечатков.
                          0
                          Это лишь повод разработать новые, улучшенные датчики отпечатков, но никак не повод отказаться от идентификации пользователей по отпечаткам.
                            0
                            Каким образом вы хотите отличать отпечаток пальца (принадлежащий человеку) от отпечатка пальца (принадлежащего злоумышленнику)?
                      +1
                      Я вижу единственный вариант «сильной» защиты голосом — если мы научились узнавать голос «вообще», то можно просить каждый раз произнести что-то другое. (совмещение каптчи и голосового распознавания).
                        0
                        О, кстати, сильная идея.
                      +1
                      Что именно делает фильтр шумоподавления, приведенный в начале статьи?
                      image
                      Обрезает высокие частоты? И откуда получены такие коэффициенты?
                      Т.к. если это фильтр на базе преобразования Фурье, то неплохо бы привести вывод этой формулы, а иначе совсем непонятно что это за зверь и где его можно применить
                        0
                        Там же написано «Входной дискретный звуковой сигнал обрабатывается фильтрами», до фурье еще дело не дошло, там другие фильтры. Коэффициенты подобраны методом научного тыка, не мной, нашел в литературе.
                          0
                          Да, это я прочитал, что «сигнал обрабатывается фильтрами». Вопрос как раз в том, что делает этот фильтр, описываемый той формулой?
                          Фильтры бывают разные — усредняющие, полосовые и т.д.
                          Вот и интересно, что в конкретном случае делается со входным сигналом?
                            0
                            Не помню уже, 9 лет прошло. Помню что разложенный по фурье спектр после этого становился гораздо чище.
                        –1
                        Как вы защищаетесь от записанного на диктофон голоса?
                          0
                          Читайте комменты выше, никак…
                          +2
                          Биометрическая идентификация имеет свои ниши. К примеру, для автомобильных систем управляемых голосом, востребована идентификация, позволяющая системе выделять из голосов разных людей голос водителя и реагирующая только на него. Аналогично, игровая приставка должна различать голоса игроков и реагировать на них, к примеру изменением поведения их персонажей. Это примеры, в которых достаточно и не 100% идентификации.
                          Можно еще массово прослушивать телефоны и вылавливать голоса людей, которые находятся в розыске. Наверняка есть еще куча специфических примеров, так что всему свое место.
                            0
                            Вы правы

                          Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

                          Самое читаемое