Как стать автором
Обновить

Лайфхаки изготовления двухслойных плат (ЛУТ)

Время на прочтение8 мин
Количество просмотров60K

Потребность делать железо периодически возникает у многих технарей. Иногда задача позволяет нафигачить всё проводами на макетке, а иногда, к сожалению, нужно нечто посерьёзнее. Вот и меня однажды настигла потребность делать печатные платы… Лазерно-утюжная технология кустарного изготовления плат по началу сильно отталкивает своей рандомностью (на чём печатать, как греть, с какой силой давить, как отдирать, и т.д.), но друзья поделились опытом, и оказалось, что это действительно не так уж сложно. ЛУТ бесспорно дешевле любого другого варианта, и (внезапно) вполне подходит для двухслойных плат.


Кому интересно посложнее, подороже и поточнее, можно делать фоторезистом, но наша методика (основным элементом которой является особая бумага) позволяет стабильно прорабатывать шины 0.3/0.3 мм, так что в нашем сообществе бытует мнение что тян фоторезисты не нужны.


Кто не видит смысла в кустарном производстве плат, скорее всего сможет вспомнить пару случаев, когда приходилось пилить дорожки и припаивать проводки на целой партии плат. А сделав одну плату дома, можно её хорошенько отладить и приобрести уверенность в фабричных платах.


Под катом я поделюсь детерминированной методикой изготовления двухслойных печатных плат по технологии ЛУТ с различными резервными схемами на случай косяков. От идеи до включения. Будем работать с KiCad, Inkscape, наждачкой, утюгом, персульфатом аммония и гравёром.



Любое устройство начинается со схемы. Большинство ошибок платы можно устранить на этапе проектирования. А чтобы схема гарантированно соответствовала плате, нужен хороший EDA-софт. Например, KiCad.


KiCad --> Плата


Если Вы всё еще работаете с проприетарными ограниченными решениями, начните со статьи Трассировка печатной платы в KiCAD или пропустите этот раздел.

Используем недавно вышедший KiCad 5, поскольку мне глубоко симпатична эта программа, её комьюнити (включающее CERN) и идея мультиплатформенного FOSS в целом.


Итак, алгоритм с лайфхаками:


  1. Находим компонент в каталоге вашего любимого магазина электроники.
  2. Находим соответствующий компонент в библиотеке KiCad.
    • Если это транзистор или другой компонент с тремя или более выводами, находим его корпус в библиотеке футпринтов в Pcbnew, смотрим нумерацию, сопоставляем с даташитом и выбираем в Eeschema компонент с правильной нумерацией выводов.
    • Если компонента нет в библиотеке KiCad, ищем в Интернетах. Если всё еще нет, находим в библиотеке похожий, экспортируем Symbol (в новую библиотеку), подключаем ее к проекту, открываем в Symbol library editor, дорабатываем, проделываем то же самое с футпринтом, если корпус тоже нестандартный.
    • Если есть ну совсем равнозначный выбор, отдаём предпочтение компонентам, у которых есть 3D-модель. KiCad умеет показывать как будет выглядеть девайс, это сильно помогает находить ошибки.
  3. Помещаем компонент на схему, в поле Datasheet компонента помещаем ссылку на этот компонент из магаза.
  4. Рисуем схему не забывая:
    • Использовать шины и метки, чтобы не перегружать схему кучей параллельных линий.
    • Давать имена цепям не входящим в шины и метки, чтобы на плате было проще ориентироваться.
    • Сохраняться.
    • Положить проект под git и комитить.
  5. Ассоциировать компоненты с футпринтами, пронумеровать компоненты, сгенерировать Netlist, сгенерировать Bill of Materials (в котором будет список ссылок и количество элементов возле каждой ссылки, чтобы прям сразу никуда больше не обращаясь наполнить корзину и заказать элементы).
  6. Открыть Pcbnew, загрузить Netlist.
  7. Настроить DRC:
    • Для сигнальных цепей минимальная ширина дорожек 0.3 мм, clearance 0.3 мм.
    • Для силовых побольше, пропорционально силе тока. Есть онлайн калькуляторы.
    • Дефолтные Via — 0.8 с отверстиями 0.6.
    • Разумеется, если будет место на плате, все эти размеры (кроме отверстий) надо делать максимальными из возможных, ведь если Via 1 мм, то вероятность попасть в неё сверлом с другого слоя крайне высока ))
    • Ну и Via 0.8 — это вовсе не жестко минимальный размер: если к отверстию подходит толстенная дорожка, то можно хоть 0.5 ставить, там все равно будет к чему удобно припаяться.
  8. Вручную нарисовать плату, следуя советам из статьи 7 правил проектирования печатных плат.
    • Мне тоже по началу казалось "фэ, это должна делать машина", но потом я однажды попробовал и мой мир больше не станет прежним. Ручная трассировка намного интереснее и увлекательнее, чем кажется. Всем советую, особенно любителям собирать паззлы.
    • К тому же, 7 правил проектирования печатных плат машина соблюдать не будет, а на исправление автотрассировки может уйти больше времени, чем на ручную трассировку.
    • Если не убедил, или у вас ОЧЕНЬ сложная плата, ну берите топор...
  9. Добавить надписей и логотипов.
    • Чтобы логотип KiCad поместить на один из медных слоёв, надо экспортировать футпринт, открыть его в текстовом редакторе и поменять "F.SilkS" на "F.Cu" во всех полигонах.
  10. Добавить 4 габаритных отверстия 0.35/0.5 по углам платы на расстоянии ~5-10 мм от линий слоя Edge.Cuts

Плата --> SVG


Когда плата готова, нужно перегнать её в SVG для дальнейшей доработки. Лучше выгрузить плату из EDA без отзеркаливания, чтобы точно не запутаться и отзеркалить как надо.


А надо отзеркалить только передний слой F.Cu. Поскольку на задний слой B.Cu мы в редакторе смотрим со стороны переднего, он уже отзеркален. Для надёжности, лучше поместить хоть какой-нибудь текст на оба слоя и следить за тем чтобы этот текст не читался ))


(спасибо, dShaded) Из KiCad лучше выгружать через File | Plot, поскольку там есть возможность сделать сразу все отверстия 0.35 мм. Для ручного ЛУТа жирные дыры не нужны, лучше пусть побольше меди будет и она сверлом счистится.



Собственно:


  1. Загружаем оба слоя в Inkscape.
  2. Устанавливаем единицы измерения документа миллиметры, и формат листа А4.
  3. Добавляем еще больше надписей белым на областях металлизации. KiCad так не умеет, напишите в комментах если ваш EDA умеет.
  4. Группируем, чтобы было только два объекта.
  5. Выравниваем (Ctrl+Shift+A), расстояние между слоями (их габаритными отверстиями) должно быть не менее сантиметра.
  6. Отзеркаливаем передний слой кнопочкой на верхнем тулбаре.
  7. Сохраняем в SVG.

Сейчас нужно отправить SVG на принтер на обычной бумаге. И сделать с этой бумагой следующее:


  1. Поприкладывать к ней компоненты и проверить футпринты (которые по-любому уже пришли из магазина: если у вас на плате больше трех-пяти компонентов, протрассировать всё за один вечер сложновато)
  2. Приложить к текстолиту и накернить 4 габаритных отверстия по углам, которые мы добавляли
    • Взять керн (или гвоздь) с молотком и сделать сверхточную неглубокую вмятину, поглощающую заблудшие свёрла. Сила удара должна быть такой, чтобы не деформировать плату.
  3. Просверлить 4 отверстия самым тонким сверлом (0.6-0.8) ровно под 90 градусов. Это, пожалуй, самая сложная часть, но ошибки условно допустимы; способ их последующего исправления придуман.
    • Если есть станок, Вам повезло.
    • Если есть CNC, Вам крупно повезло, фигачьте всё отверстия по DRL-файлу прямо сейчас безо всяких кернов-*ернов.

  • Легко догадаться, что отверстия нужны для точного ориентирования переднего слоя относительно заднего. Если хочется проще, есть способ без отверстий: очень точно сложить бумажку с шаблоном и поместить текстолит внутрь. Как уже было сказано, небольшое отклонение не станет фатальным (если, конечно, отверстия еще не просверлены)
  • Еще одной модификацией складывания поделился TonnyRed:
    Свежеотпечатанные листы с верхним и нижним слоем кладем друг на друга, просвечивая лампой и совмещая. Скрепляем в нескольких местах по краям. В получившийся конверт кладем текстолит.
  • Другим (намного более продвинутым) способом ориентирования слоёв поделился dgrees. Спасибо!

Такс, это раздел про SVG, а мы уже к станкам перешли… Всё, последний штрих по SVG и больше комп не понадобится:


Залейте чёрным всё вокруг, чтобы части текстолита, которые не относятся к плате не травились и не насыщали персульфат аммония медью. Да, хлорное железо тоже можно, но аммоний синенький.


SVG --> Текстолит


Вся статья, на самом деле, написана только ради того, чтобы поделиться с миром самой правильной бумагой для ЛУТа. Вот она:



Также, у нас есть информация о пригожести бумаги Black Diamond. Другие марки могут обладать необходимыми свойствами, а могут нет. HP не подходит точно (плавится под утюгом), Lomond условно подходит, "но как-то средне". Можно экспериментировать с разной глянцевой фотобумагой для струйной печати. Пишите в коменты чо как с другими бумагами )




oco советует использовать рукав для запекания. Это прозрачная пленка, не плавится под утюгом и легко снимается с платы, оставляя тонер. В принтер заправлять вместе с листом обычной бумаги.

Алгоритм:


  1. Ставим утюг греться на максимальную температуру.
  2. Шлифуем текстолит с обеих сторон мелкой наждачкой, сантехнической абразивной губкой (спасибо, klirichek), губкой для посуды или абразивным ластиком.
  3. Если Ваш принтер умеет кушать форматы отличные от A4, Отрезаем от А4 полоску по размеру изображения. Бумага сверхценная: если Вам удалось её достать, надо экономить.
  4. Заталкиваем в принтер узкой стороной. Проверяем, что изображение двух слоёв платы не превышает ширины отрезанной полоски по ширине и 210 по высоте.
  5. Печатаем лазерником с оригинальным тонером в картридже на этой глянцевой фотобумаге для струйных принтеров.
  6. Не прикасаясь к тонеру, разрезаем слои на две отдельные бумажки и дырявим габаритные отверстия на обоих слоях.
  7. Вставляем прямые штырьки (например, от PLS/PLD гребёнки) в 4 габаритных отверстия.
  8. Насаживаем передний слой.
  9. Проглаживаем равномерно, сильно не надавливая, до пожелтения бумаги (или еще каких-либо знаков свыше, это всё-таки ЛУТ: совсем избавиться от магии, наверно, невозможно). Штырьки можно вытащить когда бумага начнет прилипать и потеряет способность смещаться.
  10. Не отдирая бумагу от текстолита, повторяем последние три пункта с задним слоем.
  11. Даём текстолиту остыть: можно пока поставить греться чайник и начать разбодяживать персульфат аммония.
  12. С остывшего текстолита (без воды, это архиважно) аккуратненько отодрать лишнюю бумагу. Тонер должен сойти вместе с глянцевым слоем фотобумаги, так и было задумано.



В случае ошибок, можно стереть один из слоёв ацетоном, подложить уже оторванную бумажку противоположного слоя (чтобы тонер не отлип от платы и не перевёлся на доску, на которой Вы гладите) и повторить.


Текстолит --> Текстолит с дорожками


Для травления, нам понадобится пластиковый контейнер (или любая не-металлическая тара, в которую плата поместится лёжа). А также, одноразовая ложка или варибаси для помешивания платы (против пузырьков, которые мешают травиться).


Персульфат аммония рекомендуется разводить в тёплой воде 1:2. Но это довольно высокая концентрация, 1:3 или даже 1:4 хватит. В конце концов, можно еще подразмешать потом. Рекомендуемая температура разбодяживания — 40-50 градусов.


Однако, учтите, что перегревать всякого рода химикаты довольно опасно. Высокая концентрация, высокая температура и соли меди могут привести к криповому результату:


https://vk.com/video-24764675_456239191


Пользуйтесь респиратором.


Желательно шевелить плату, сгонять с нее пузырьки и поддерживать температуру в районе 35-45 градусов на водяной бане. Но если персульфат не дохлый, она и сама может поддерживаться (см. видео выше).


Если плохо травится, можно:


  1. Купить новый аммоний, он теряет свои свойства при хранении в условиях повышенной влажности
  2. Перестать помешивать
  3. Еще подождать
  4. Вытащить плату и подогреть раствор в микроволновке (аккуратно)
  5. Подразмешать ещё чучуть белого порошка

Спасибо, Helium4 за консультацию в личке по данному разделу.

После травления, тонер стирается ацетоном.


Текстолит с дорожками --> Плата


Осталось просверлить и соединить переходные отверстия.


Лайфхак: Если так получилось, что имеет место быть смещение слоёв, его можно компенсировать углом наклона сверла.


С первого отверстия сложновато поймать нужный угол, так что лучше сначала сверлить наименее требовательные к выходной точке отверстия (например, те, что выходят в область металлизации или объемные острова меди)


После просверливания, необходимо соединить отверстия. Разумеется, мы будем это делать с помощью резисторных/конденсаторных ножек и паяльника. Но иногда на переходное отверстие надо сверху поставить SMD-компонент, и в этом случае высокая плюшка припоя недопустима. Мы придумали следующий трюк:


  1. Запаиваем штырь
  2. Стачиваем гравёром всё лишнее
  3. ....
  4. Профит!

Также можно заказать и использовать клёпки, спасибо tretyakovmax за напоминание о них (Правда, его способ с расклёпыванием жил пачкорда — это, похоже, тема отдельной статьи)


Если Вы всё-таки ошиблись и протравили слой с компонентами у которых более двух выводов отзеркаленным, попробуйте выгнуть ножки компонентов в обратную сторону и припаять их вверх ногами.


Типа всё ))


Можно запаивать компоненты и врубать питание.


А после тестирования и исправления, привести в порядок переходные отверстия, перенести текст и логотипы на слой шелкографии и заказать фиолетовые платы на OSHPark, или много плат на EasyEDA.


Плата на КДПВ действительно изготовлена ЛУТом, а не заказана с OSHPark. Фиолетовая паяльная маска решает :)

Вот еще годный видос для дальнейшего изучения всякого рода тонкостей (осторожно, залипательный канал, есть пострадавшие):



Спасибо за внимание!

Теги:
Хабы:
+50
Комментарии152

Публикации