Как стать автором
Обновить

Почему единицу не относят к простым числам, и когда её вообще начали считать числом

Время на прочтение5 мин
Количество просмотров41K
Автор оригинала: Evelyn Lamb
Мой друг инженер недавно меня удивил. Он сказал, что не уверен, является число 1 простым или нет. Я удивилась, потому что никто из математиков не считает единицу простым.

Путаница начинается с определения, которое дают простому числу: это положительное целое число, которое делится только на 1 и само на себя. Число 1 делится на 1, и оно делится само на себя. Но деление на себя и на 1 здесь не является двумя различными факторами. Так простое число это или нет? Когда я пишу определение простого числа, то пытаюсь устранить эту двусмысленность: я прямо говорю о необходимости ровно двух различных условий, деление на 1 и само на себя, или что простое число должно быть целым числом больше 1. Но зачем идти на такие меры, чтобы исключить 1?

Моё математическое образование научило меня, что хорошей причиной того, почему 1 не считается простым, является основная теорема арифметики. Она утверждает, что каждое число может быть записано как произведение простых чисел ровно одним способом. Если бы 1 было простым, мы бы потеряли эту уникальность. Мы могли бы записать 2 как 1×2, или 1×1×2, или 1594827×2. Исключение 1 из простых чисел устраняет это.

Изначально я планировала в статье объяснить основную теорему арифметики и покончить с этим. Но на самом деле не так сложно изменить формулировку теоремы для решения проблемы с единицей. В конце концов, вопрос моего друга разжёг моё любопытство: как математики остановились на этом определении простого числа? Беглый поиск по Википедии показал, что единица раньше считалась простым числом, а сейчас нет. Но статья Криса Колдуэлла и Енг Сюна демонстрирует немного более сложную историю. Это можно понять с самого начала их статьи: «Во-первых, является ли число (особенно единица) простым — это вопрос определения, то есть вопрос выбора, контекста и традиции, а не вопрос доказательства. Тем не менее, определения не возникают случайным образом; выбор связан с нашим использованием математики и, особенно в этом случае, нашей нотацией».

Колдуэлл и Сюн начинают с классических греческих математиков. Они не считали 1 числом так же, как 2, 3, 4 и так далее. 1 считалась цифрой, а число состояло из нескольких цифр. По этой причине 1 не могла быть простым — это даже не число. Арабский математик IX века аль-Кинди писал, что это не число и, следовательно, не является чётным или нечётным. В течение многих веков преобладало представление, что единица — это строительный блок для составления всех чисел, но не само число.

В 1585 году фламандский математик Саймон Стевин указал, что в десятичной системе нет никакой разницы между 1 и любыми другими числами. Во всех отношениях 1 ведёт себя как любая другая величина. Хотя и не сразу, но это наблюдение в конечном итоге привело математиков к принятию 1 как любого другого числа.

До конца XIX века некоторые выдающиеся математики считали 1 простым, а некоторые нет. Насколько я могу судить, это не было причиной разногласий; для самых популярных математических вопросов различие не являлось критически важным. Колдуэлл и Сюн цитируют Г. Х. Харди как последнего крупного математика, считающего 1 простым (он явно указал его в качестве простого числа в первых шести изданиях «Курса чистой математики», опубликованных между 1908 и 1933 годами, а в 1938 году изменил определение и назвал 2 наименьшим простым).

В статье упоминаются, но не разбираются подробно изменения в математике, из-за которых 1 исключили из списка простых чисел. В частности, одним из важных изменений стала разработка множеств за пределами множества целых чисел, которые ведут себя как целые.

В самом простом примере мы можем спросить, является ли число -2 простым. Вопрос может показаться бессмысленным, но он побуждает нас выразить словами уникальную роль единицы среди целых чисел. Самым необычным аспектом 1 является то, что его обратное значение тоже является целым числом (обратное значение x — это число, которое при умножении на x даёт 1. У числа 2 обратное значение 1/2 входит в множество рациональных или действительных чисел, но не является целым: 1/2×2=1). Число 1 оказалось собственным обратным числом. Ни у какого другого положительного целого числа нет обратного значения в множестве целых чисел. Число с обратным значением называется обратимым элементом. Число −1 тоже является обратимым элементом в наборе целых чисел: опять же, оно обратимый элемент само для себя. Мы не рассматриваем обратимые элементы как простые или составные, потому что вы можете умножить их на некоторые другие обратимые элементы без особых изменений. Тогда мы можем считать, что число -2 не так уж отличается от 2; с точки зрения умножения. Если 2 является простым, то и −2 должно быть таким же.

Я старательно избегала в предыдущем абзаце определения простого из-за неудачного факта, что для этих больших множеств такое определение не подходит! То есть оно немного нелогично, и я бы выбрала другое. Для положительных целых чисел у каждого простого числа p два свойства:

Его нельзя записать как произведение двух целых чисел, ни одно из которых не является обратимым элементом.

Если произведение m×n делится на p, то m или n должны быть делимы на p (для примера, m=10, n=6, а p=3.)

Первое из этих свойств — то, как мы могли бы охарактеризовать простые числа, но, к сожалению, тут получается неприводимый элемент. Второе свойство — это простой элемент. В случае натуральных чисел, конечно, одни и те же числа удовлетворяют обоим свойствам. Но это не относится к каждому интересному набору чисел.

В качестве примера рассмотрим множество чисел вида a+b√−5 или a+ib√5, где a и b — целые числа, а i — квадратный корень из −1. Если вы умножите числа 1+√−5 и 1-√−5, то получите 6. Конечно, вы также получите 6, если умножите 2 и 3, которые тоже находятся в этом множестве чисел при b=0. Каждое из чисел 2, 3, 1+√−5, и 1−√−5 нельзя представить как произведение чисел, которые не являются обратимыми элементами (если не верите мне на слово, это не слишком трудно проверить). Но произведение (1+√−5)(1−√−5) делится на 2, а 2 не делится ни на 1+√−5, ни на 1−√−5 (опять же, можете проверить, если не верите мне). Таким образом, 2 является неприводимым элементом, но не простым. В этом наборе чисел 6 можно разложить на неприводимые элементы двумя различными способами.

Приведённое выше число, которое математики могут назвать Z[√-5], содержит два обратимых элемента: 1 и −1. Но есть аналогичные множества чисел с бесконечным количеством обратимых элементов. Поскольку такие множества стали объектами изучения, есть смысл чётко разграничить определения обратимого, неприводимого и простого элементов. В частности, если есть множества чисел с бесконечным числом обратимых элементов, становится всё труднее понять, что мы подразумеваем под уникальной факторизацией чисел, если не уточнить, что обратимые элементы не могут быть простыми. Хотя я не историк математики и не занимаюсь теорией чисел и хотела бы прочитать больше, как именно происходил этот процесс, но я думаю, что это одна из причин, которые Колдуэлл и Сюн считают причиной исключения 1 из простых чисел.

Как это часто бывает, мой первоначальный аккуратный и лаконичный ответ на вопрос, почему всё устроено так, как есть, в конечном итоге стал только частью проблемы. Спасибо моему другу за то, что задал вопрос и помог мне узнать больше о сложной истории простоты.
Теги:
Хабы:
Всего голосов 40: ↑36 и ↓4+32
Комментарии75

Публикации

Истории

Ближайшие события

7 – 8 ноября
Конференция byteoilgas_conf 2024
МоскваОнлайн
7 – 8 ноября
Конференция «Матемаркетинг»
МоскваОнлайн
15 – 16 ноября
IT-конференция Merge Skolkovo
Москва
22 – 24 ноября
Хакатон «AgroCode Hack Genetics'24»
Онлайн
28 ноября
Конференция «TechRec: ITHR CAMPUS»
МоскваОнлайн
25 – 26 апреля
IT-конференция Merge Tatarstan 2025
Казань