Как стать автором
Обновить

Осваиваем компьютерное зрение — 8 основных шагов

PythonПрограммированиеData MiningBig DataМашинное обучение
Привет, читатель.

Для тебя уже не является новостью тот факт, что все на себе попробовали маски старения через приложение Face App. В свою очередь для компьютерного зрения есть задачи и поинтереснее этой. Ниже представлю 8 шагов, которые помогут освоить принципы компьютерного зрения.

image

Прежде, чем начать с этапов давайте поймём, какие задачи мы с вами сможем решать с помощью компьютерного зрения. Примеры задач могут быть следующими:


Минимальные знания, необходимые для освоения компьютерного зрения



Итак, теперь давайте приступим непосредственно к этапам.

Шаг 1 — Базовые методики работы с изображениями


Этот шаг посвящен техническим основам.

Посмотрите — отличный YouTube-плейлист «Древние секреты компьютерного зрения» от Joseph Redmon.





Прочтите — третью главу книги Ричарда Шелиски «Компьютерное зрение: Алгоритмы и приложения».

image

Закрепите знания — попробуйте себя в преобразовании изображений с помощью OpenCV. На сайте есть много пошаговых электронных пособий, руководствуясь которыми можно во всём разобраться.

Шаг 2 — Отслеживание движения и анализ оптического потока


Оптический поток — это последовательность изображений объектов, получаемая в результате перемещения наблюдателя или предметов относительно сцены.

Пройдите курс — курс по компьютерному зрению на Udacity, в особенности урок 6.
Посмотрите — 8-ое видео в YouTube-списке и лекцию об оптическом потоке и трекинге.


Прочтите — разделы 10.5 и 8.4 учебника Шелиски.

image

В качестве учебного проекта разберитесь с тем, как с помощью OpenCV отслеживать объект в видеофрейме.

Шаг 3 — Базовая сегментация


В компьютерном зрении, сегментация — это процесс разделения цифрового изображения на несколько сегментов (суперпиксели). Цель сегментации заключается в упрощении и/или изменении представления изображения, чтобы его было проще и легче анализировать.

Так, преобразование Хафа позволяет найти круги и линии.

Посмотрите эти видео:





Ознакомьтесь — отличный проект подобные задачи которого чрезвычайно важны для компьютерного зрения самоуправляемых электромобилей.



Шаг 4 — Фитинг


Для различных данных требуется специфичный подход к фитингу и свои алгоритмы.

Посмотрите видео:


Прочтите — разделы 4.3.2 и 5.1.1 учебника Шелиски.

В качестве задания для самостоятельной работы проанализируйте проблему определения координаты места схождения линий на горизонте перспективы.

Шаг 5 — Совмещение изображений, полученных с разных точек осмотра


Посмотрите Youtube-плейлист


Прочтите — сопроводительное письмо.

Для проекта можно взять собственные данные. Например, сфотографировать с разных сторон что-то из мебели и сделать в OpenCV из альбома плоских изображений 3D-объект.

Шаг 6 — Трёхмерные сцены


Умея создавать 3D-объекты из плоских изображений, можно попробовать создать и трёхмерную реальность.

Пройдите — курс по стереозрению и трекингу

Посмотрите видео:




В качестве проекта попытайтесь реконструировать сцену или сделать трекинг объекта в трехмерном пространстве.

Шаг 7 — Распознавание объектов и классификация изображений


В качестве фреймворка для глубокого обучения удобно использовать TensorFlow. Это один из наиболее популярных фреймворков, поэтому вы без труда отыщете достаточно примеров. Для начала работы с изображениями в TensorFlow пройдите этот туториал.

Далее, пользуясь ссылками, рассмотрите следующие темы:


В качестве проекта создайте в TensorFlow нейросеть, определяющую по изображению марку автомобиля или породу собаки.

Шаг 8 — Современное глубокое обучение


Прочитайте — лекции Стенфордского курса

Посмотрите видео:




На этом наши шаги в изучении компьютерного зрения подошли к концу. Надеюсь вы узнали для себя что-нибудь новое. Как принято на Хабре, понравился пост — поставь плюс. Не забудьте поделиться с коллегами. Также, если у вас есть то, чем вы можете поделиться сами — пишите в комментариях. Больше информации о машинном обучении и Data Science на Хабре и в телеграм-канале Нейрон (@neurondata).

Всем знаний!
Теги:компьютерное зрениетеги все читают
Хабы: Python Программирование Data Mining Big Data Машинное обучение
Всего голосов 40: ↑35 и ↓5 +30
Просмотры55.6K

Похожие публикации

Data Scientist / ML-инженер (Big Data)
до 300 000 ₽МТСМосква
Data Scientist (Computer Vision)
от 100 000 до 200 000 ₽Innopolis CityМожно удаленно
Data Engineer (Big data)
от 200 000 до 230 000 ₽МТСМосква
Python разработчик (Big data)
от 220 000 до 240 000 ₽МТСМосква
Разработчик ML
от 100 000 до 200 000 ₽6th grainМожно удаленно

Лучшие публикации за сутки