Как стать автором
Обновить

Программатор для EPROM на Arduino

Время на прочтение3 мин
Количество просмотров36K

Понадобилось при изучении и ремонте компьютеров, которые старше меня, прошивать ПЗУшки. Тесты оперативной памяти и периферии проводить. Нормального программатора у меня на тот момент не было.


Собрать на логике для LPT порта, конечно, можно, но данный вариант был отброшен, так как для использования пришлось бы включать ещё какого-нибудь старичка. В современных компах все ещё встречается данный интерфейс (правда не полноценный разъем, а на гребенке) да и купить плату в PCI слот тоже не проблема, но возникают уже сложности с софтом. Он был написан очень давно, когда работа с портами ввода/вывода в операционных системах велась иначе. Соответственно, в современных версиях Windows ПО не будет работать.


Сразу стоит оговориться, что про существование TL866 знаю. И даже в процессе разработки все же его купил себе, но он не в состоянии прошить микросхемы, которые требуют высокое напряжение программирования. Максимум 18 вольт (TL866+ или 21 для предыдущей версии).


Беглое гугление привело меня к данному репозиторию. Собрав программатор, я смог сдампить пару интересующих чипов. А вот с прошивкой все оказалось куда сложнее… Софт этого просто не умеет… Его, конечно, можно обмануть, выставив неправильный чип, но работает это не во всех случаях и явно не наш метод


Очень сильно огорчил пользовательский интерфейс, который, вместо классического варианта с предоставлением права выбора порта пользователю, проходился по всем доступным последовательным интерфейсам. Соответственно, все устройства перезагружаются. Особенно обидно, наверное, когда у тебя 3D принтер уже часов 10 печатает детальку с флешки, а тут такая подстава...


Мир OpenSource прекрасен тем, что ты можешь взять проект и дописать его под свою задачу. В данном случае исходных кодов к графическому интерфейсу нет. По крайней мере я их не нашел, хотя можно было написать разработчику. Стало интересно и появился небольшой повод для изучения Qt. Так что софт будет кросплатформенный.


Берем за основу схему из предыдущего проекта и дорабатываем устройство до требуемого функционала. Решил пожертвовать поддержкой EEPROM в софте. Возможно, это не совсем удачное решение, но для электрически стираемых чипов уже не нужно такое высокое напряжение. При доработке опирался на самую объемную микросхему (27C512 для DIP28) и убрал всю путаницу относительно адресных ножек. Весь адрес будет задаваться исключительно при помощи сдвиговых регистров (74HC595). Это освободит дополнительные ноги самого микроконтроллера, которые понадобятся для управления подачей напряжения программирования. А все необходимые сигналы (PRG) можно получить модификацией адреса перед загрузкой в регистры.


Принцип подачи напряжения программирования остался прежним. Изменения только в области защиты выводов микроконтроллера и сдвиговых регистров. Заменил резисторы (1 КОм) на диоды с подтяжкой к лог. 0. Это менее агрессивный вариант. Хотя, справедливости ради, и резисторы работают.


Изучив документацию на все интересующие чипы, определил, что требуется три точки подачи Vpp:

  1. 27C16 на 21 ногу микросхемы (23 ногу DIP28 сокета)
  2. 27C32 и 27C512 на сигнал #OE (Output Enable)
  3. 27C64, 27C128, 27C256 на 1 ногу микросхем


Микросхемы 27C16 и 27C32 от остальных отличаются корпусом, так что им требуется подавать напряжение питания на 26 ножку сокета. Это адресная нога A13 для более емких собратьев. Тока с выхода сдвигового регистра должно хватить для работы, но на время загрузки данных его выходы переходят в Z состояние. Подобный режим допустим, но включение на чтение или запись одной ячейки вряд ли является нормой. Поэтому под управление питания установлен дополнительный транзистор. И ещё один потребовался для 27C16, которому на время чтения необходимо подать на вход Vpp 5 вольт. Можно, конечно, на время чтения выставить напряжение программирования на значения 5 вольт, но переключаться между 25 и 5 вольтами неудобно.


Если есть свободные ноги АЦП, то почему бы не измерять напряжение программирования? Плата разведена под Arduino Nano. На нем имеются два дополнительных входа, которые кроме как для АЦП использовать нельзя. На самом деле это особенность многих микроконтроллеров AVR в корпусе для поверхностного монтажа. На китайских Arduino UNO частенько есть входы A6 и A7. С учетом того, что напряжение может быть до 30 вольт (вроде больше всего хотят отечественные РФ5, 25 вольт), рассчитываем делитель из того, что есть в наличии. Точность в 0.5 вольта для данной задачи вполне достаточна. Эта функция — защита от дурака, а не вольтметр.


Можно, конечно, было заморочиться и выступать в качестве ШИР (широтно импульсное регулирование) контроллера, но ножек свободных не осталось. Поэтому на печатной плате есть посадочное место для преобразователя DC-DC Step Up на чипе MT3608, которые за копейки доступны на али.


По схеме на этом все.




Алгоритм работы с данными микросхемами очень прост. С ним можно ознакомится в небольшом видео.




Схемы и софт доступны в репозитории на GitHub: https://github.com/walhi/arduino_eprom27_programmer. При сборке можно спокойно менять номиналы резисторов. Правда с делителем потребуется немножко исправить код скетча.



Теги:
Хабы:
+40
Комментарии5

Публикации

Изменить настройки темы

Истории

Ближайшие события

Weekend Offer в AliExpress
Дата20 – 21 апреля
Время10:00 – 20:00
Место
Онлайн