Если вы думали, что медицинская маска обманет камеры распознавания лиц, то для вас есть две плохие новости. Во-первых, исследователям удалось значительно усовершенствовать системы машинного зрения, так что теперь распознавание достаточно надёжно выполняется по половине лица или по области глаз (по половине лица уровень успешного распознавания составляет 90%).

Вторая плохая новость, что вспышка коронавируса подтолкнула китайских производителей SenseTime, FaceGo, Minivision внедрять технологии распознавания частично закрытых лиц в коммерческие модели видеокамер. Из-за вспышки Covid-19 много граждан стали выходить на улицы в масках — поэтому приходится модернизировать системы видеонаблюдения.

Новые формы распознавания лиц теперь могут распознавать не только людей в масках, закрывающих рот, но и людей в шарфах или с фальшивыми бородами. Одна из первых научных работ на эту тему была опубликована ещё в 2017 году, это статья «Идентификация маскированных лиц (DFI) по ключевым точкам с использованием пространственной свёрточной сети» (Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network; arXiv:1708.09317v1).


Образцы из набора данных для обучения нейросети

Как известно, распознавание лиц работает путём идентификации на лице человека нескольких ключевых точек — и их соединения, в результате чего формируется уникальная «графическая» подпись. Эти ключевые точки обычно находятся вокруг глаз, носа и губ. Чтобы система могла работать при закрытой нижней половине лица исследователи расположили больше ключевых точек вокруг глаз и носа.


Структура свёрточной нейросети в системе DFI

Нейросеть в системе DFI находит на фотографии лица 14 ключевых точек, но точность падает в зависимости от уровня маскировки и сложности фона позади человека.

Однако с 2017 года проведено больше исследований на эту тему, а теперь очевидно, что технология имеет большую коммерческую ценность. Первым свою систему распознавания лиц адаптировал китайский лидер в области ИИ-разработок SenseTime, о чём компания объявила на прошлой неделе.

В пресс-релизе SenseTime говорится, что её алгоритм «предназначен для считывания 240 ключевых точек лица вокруг глаз, рта и носа». Он может найти соответствие, используя только те части лица, которые видны. Другими словами, ключевых точек даже вокруг глаз может быть достаточно для составления уникального отпечатка, пусть и частичного отпечатка лица.


Система SenseTime

Исследователи из Брэдфордского университета под руководством профессора Хассана Угайла (Hassan Ugail) в мае 2019 года сообщили об улучшенной модели распознавания лиц, добившись точности распознавания 90% на половине лица и 100% по трём четвертям лица. Научная статья «Глубокое распознавание лиц с использованием несовершенных данных о лицах» ("Deep face recognition using imperfect facial data") опубликована в журнале Future Generation Computer Systems (doi:10.1016/j.future.2019.04.025).

Другая китайская компания по распознаванию лиц Minivision утверждает, что их программное обеспечение тоже теперь способно распознавать людей в масках. Столкнувшись со вспышкой Covid-19 и массовым выходом на улицу людей в масках, Minivision начала экстренную кампанию по сбору данных для дообучения модели. «Руководство срочно мобилизовало сотрудников и родственников для сбора ограниченного набора данных за два дня. Ключевой информацией, которую система регистрировала на лицах в масках, были глаза», — пишет издание Abacus.

Спешка вызвана жёсткими мерами Китая по борьбе с эпидемией. Во многих жилых районах, наиболее пострадавших от вируса, вход ограничен только для жителей района. Minivision внедрила новый алгоритм в свои системы распознавания лиц для блокировки ворот в сообществах в Нанкине, чтобы быстро распознавать жителей без необходимости снимать маски.



Программы SenseTime и FaceGo используются преимущественно для распознавания сотрудников компаний (для учёта рабочего времени).

Когда выборка ограничена жителями одного района или компании, то задача системы распознавания лиц на порядок упрощае��ся. Расширить эту систему на более широкую группу людей будет трудно. Когда выборка достигает определённого масштаба, то система скорее столкнётся с людьми с похожими глазами. В этом случае повышается риск ложных срабатываний.

Впрочем, биометрические системы быстро развиваются. Возможно, когда-нибудь камеры смогут на расстоянии считывать даже радужную оболочку глаза и отпечатки пальцев. Разрабатываются удалённые сенсоры сердцебиения, температуры тела, системы идентификации человека по походке. Кроме того, люди часто носят с собой смартфоны и другие электронные устройства, по которым их можно скрытно идентифицировать.




Подробнее о PKI-решениях для предприятий у менеджеров GlobalSign +7 (499) 678 2210, sales-ru@globalsign.com.