Как стать автором
Обновить

Космическая энергетика

Время на прочтение10 мин
Количество просмотров16K
Советский ученый Николай Кардашев полвека назад сформировал шкалу, в которой уровень развития цивилизации определялся количеством используемой энергии. Подход очень логичный — когда человечество осваивало энергию лошади, угля, нефти и атомного распада — каждый раз оно поднималось на новый уровень могущества. Освоение космоса зависит не только от возможностей вывести спутник на орбиту, но и от технологий, позволяющих ему функционировать. И обеспечение энергией космических аппаратов является одной из важнейших граней космонавтики. Какие способы успели придумать люди?


Художник James Vaughan

Постановка задачи


В задаче энергоснабжения космического аппарата можно выделить два критерия, позволяющие наглядно распределить различные подходы. Это мощность и длительность. Действительно, логично, что одни технические решения используются для задачи “много, но недолго” и другие — для “десятилетиями, пусть и немного”. Если взять эти критерии как оси графика, то получится следующая картина:


Spacecraft Power Systems, David W. Miller, John Keesee

Первый спутник отправился в полет с заряженными серебряно-цинковыми аккумуляторами, которые обеспечивали “бип-бип” передатчика 21 день. Решение было логичным — экспериментальные солнечные панели ждали своей очереди на объекте “Д”, который стал “Спутником-3” (запущен 15 мая 1958). Серебряно-цинковые батареи, благодаря высокой плотности энергии и большим токам разряда, нашли широкое применение в космонавтике, а их недостаток — небольшое количество циклов перезарядки неважен в случае, когда батарея используется один раз. Любопытная метаморфоза произошла с кораблем “Союз” — первые корабли летали с солнечными панелями, на модификации 7К-Т (“Союз-10” — “Союз-40”, кроме -13, -16, -19, -22) их убрали, оставив только аккумуляторы с запасом электроэнергии на двое суток, а со следующей модификации “-ТМ” солнечные панели снова вернули и уже насовсем. До сих пор аккумуляторы остаются рациональным решением для аппаратов, которые будут работать не дольше нескольких суток и не требуют больших объемов электричества. Иногда на аппараты ставят даже неперезаряжаемые элементы, например, прыгающий зонд MASCOT, сброшенный с межпланетной станции Hayabusa-2 на астероид Рюгу, использовал литий-тионилхлоридные элементы, которых хватило на 16 часов. Но перезаряжаемые элементы встречаются чаще, с ними удобнее работать, потому что, при необходимости, их можно подзарядить перед запуском без разборки аппарата. Литий-ионные элементы, благодаря своим высоким характеристикам, сейчас получают очень широкое распространение не только в бытовых приборах, но и на космических аппаратах.


Зонд MASCOT станции Hayabusa-2

Если энергии требуется очень много, но на короткое время, имеет смысл применять химические источники. Например, на спейс шаттлах были так называемые APU. Несмотря на полностью совпадающее название с вспомогательной силовой установкой на самолетах, это были специфические устройства. В камере сгорания сжигалось химическое топливо (горючее на основе гидразина и азотный тетраоксид), горячий газ подавался на турбину, а ее вращение создавало давление в гидросистеме шаттла без промежуточного превращения энергии в электричество. Гидравлика поворачивала управляющие поверхности орбитера на этапах выведения на орбиту и посадки. Любопытно, что сейчас плотность энергии литий-ионных батарей достигла таких значений, что появилась ракета-носитель Electron, в которой выполняющий похожую функцию турбонасосный агрегат (устройство для подачи топлива в двигатель) заменили на электрический насос с блоком аккумуляторов. Потери на большей массе батарей компенсировались простотой разработки.

Топливные элементы



Топливный элемент спейс шаттла

Если длительность космического полета не превышает две-три недели, то, в особенности для пилотируемых кораблей, очень привлекательными становятся так называемые топливные элементы. Как известно, водород горит в кислороде с выделением огромного количества тепла, и ракетные двигатели, использующие это, являются одними из наиболее эффективных. А возможность напрямую получать электричество из соединения водорода с кислородом породила источники электроэнергии, применяющиеся, кстати, не только в космонавтике.

Топливный элемент работает следующим образом: водород попадает на анод, становится положительно заряженным ионом и отдает электрон. На катоде ионы водорода получают электроны, соединяются с молекулами кислорода и образуют воду.

Соединив несколько ячеек и подавая больше компонентов, можно легко получить топливный элемент большой мощности. А выделяющуюся в результате работы воду можно использовать для нужд экипажа. Сочетание свойств обусловило выбор топливных элементов для кораблей “Аполлон” (и, кстати, для лунных версий “Союзов“ первоначально выбрали тоже их), шаттлов и “Бурана”.

Стоит отметить, что топливные элементы теоретически могут быть обратимыми, диссоциируя воду на водород и кислород, запасая электроэнергию и работая, фактически, как аккумулятор, но на практике такие решения в космонавтике пока не востребованы.

По имени Солнце


Жизнь на Земле невозможна без солнечной энергии — на свету растут растения, и энергия уходит дальше по пищевой цепочке. И для космонавтики Солнце сразу же стало рассматриваться как доступный и бесплатный источник. Первые спутники с солнечными панелями, Vanguard-1 (США) и “Спутник-3” (СССР), отправились в полет уже в 1958 году.

Прелесть солнечных панелей заключается в непосредственном превращении света в электричество — фотоны, падая на полупроводники, напрямую вызывают движение электронов. Соединяя ячейки последовательно и параллельно, можно получить требуемые значения напряжения и тока.

В космических условиях очень важным является компактность солнечных панелей, например, огромные “крылья” МКС сделаны из очень тонких панелей, которые в транспортировочном положении были сложены гармошкой.


Видео раскрытия панелей МКС

До сих пор солнечные панели остаются наилучшим вариантом, если необходимо снабжать космический аппарат энергией годами. Но, конечно, они, как и любое другое решение, имеют и свои недостатки.

Прежде всего, на низкой околоземной орбите спутник постоянно будет уходить в тень Земли, и необходимо дополнить панели аккумуляторами, чтобы электропитание было непрерывным. Аккумуляторы и дополнительная площадь солнечных панелей для их зарядки на солнечной стороне орбиты заметно увеличивают массу электросистемы спутника.

Далее, мощность солнечного излучения подчиняется закону обратных квадратов: Юпитер в 5 раз дальше Земли, но на его орбите космический аппарат с такими же солнечными панелями будет получать в 25 раз меньше электроэнергии.

Солнечные панели постепенно деградируют в условиях космического излучения, так что на длительные миссии их площадь необходимо рассчитывать с запасом.

Линейное увеличение массы солнечных панелей с ростом требуемой мощности в какой-то момент делает их слишком тяжелыми по сравнению с другими системами.

Альтернатива аккумуляторам


Если вы читали замечательную книгу Нурбея Гулиа “В поисках энергетической капсулы”, то можете помнить, что после долгих поисков идеального аккумулятора он остановился на модифицированных для безопасного разрушения маховиках. Сейчас с успехами литий-ионных батарей эта тема менее интересна, но эксперименты по хранению энергии в раскрученном маховике проводились и в космонавтике. В начале 21 века компания Honeywell проводила эксперименты с маховиками-аккумуляторами. Теоретически это направление может быть интересно еще и тем, что маховики используются в системе ориентации спутника, и можно совместить режимы поддержания требуемого положения в пространстве и хранения энергии.

Сконцентрируй это


Еще на стадии проработки концепта было очевидно, что станция Freedom (после многочисленных изменений реализованная как МКС) будет нуждаться в большом количестве электроэнергии. И расчеты 1989 года показали, что солнечный коллектор сможет сэкономить от 3 до 4 миллиардов долларов (6-8 миллиардов в сегодняшних ценах) по сравнению с электропитанием только от солнечных панелей. Что это за конструкции?


Один из ранних проектов Freedom

Конструкции из шестиугольников по краям — солнечные концентраторы. Зеркала образуют параболоид, собирающий солнечный свет на приемник, расположенный в фокусе. В нем теплоноситель закипает, газ крутит турбину, которая вырабатывает электричество. Панель рядом — радиатор тепла, в котором теплоноситель конденсируется обратно в жидкость.

К сожалению, конструкция, как и многие идеи для станции Freedom, пала жертвой урезания бюджета, и МКС использует только солнечные панели, так что мы не можем на практике узнать, оправдались бы ожидания экономии средств. Стоит отметить, что солнечные коллекторы используются и на Земле, но распространены они в наиболее простой форме без концентрирующих зеркал — их приводы сильно повышают стоимость.

Тепло и электричество


Когда над головой ярко светит Солнце, в космический холод не верится. Действительно, на освещенной стороне Луны температура поднимается выше 100°C. Но вот лунной ночью поверхность охлаждается ниже -100°C. На Марсе средняя температура в районе -60°C. А на орбите Юпитера, как мы уже говорили, Солнце дает только 1/25 того, что достается Земле. И, к счастью для планетоходов и межпланетных станций, есть вариант, при котором удобно обеспечиваются и подогрев и энергообеспечение космического аппарата.

Как известно, у одного и того же вещества может быть много изотопов — атомов, отличающихся только количеством нейтронов в ядре. И есть как стабильные, так и распадающиеся с разной скоростью изотопы. Подобрав элемент с удобным периодом полураспада можно использовать его в качестве источника энергии.

Одним из наиболее популярных изотопов является 238Pu (плутоний-238). Один грамм чистого плутония-238 генерирует примерно 0,5 Ватта тепла, а период полураспада в 87,7 лет означает, что энергии хватит надолго.

То, что ядерный распад выделяет тепло, означает, что его надо каким-то образом превратить в электричество. Для этого чаще всего используют термопару — сплавленные вместе два различных металла генерируют электричество при неравномерном нагреве. Сочетание источника энергии в виде распадающихся радиоактивных изотопов и термоэлектрических преобразователей дало название “радиоизотопный термоэлектрический генератор” или РИТЭГ.


Схема РИТЭГа

РИТЭГи достаточно широко используются в космонавтике: они вырабатывали электричество для модулей научного оборудования, оставленных на Луне астронавтами “Аполлонов”, распадом изотопов обогревались советские “Луноходы”, на электричестве от РИТЭГа работали марсианские станции “Викинг” и ездит по Марсу “Кьюриосити”. РИТЭГи являются штатным источником электричества для аппаратов, отправляющихся во внешнюю солнечную систему — “Пионеров”, “Вояджеров”, “Новых горизонтов” и других.

РИТЭГи очень удобны тем, что не требуют никакого управления, не имеют движущихся частей и способны работать десятилетиями — “Вояджеры” остаются работоспособными уже более сорока лет, несмотря на необходимость отключения части оборудования из-за снижения выработки электричества. К сожалению, у них есть и недостаток — низкая плотность энергии (мощный РИТЭГ будет слишком много весить) и высокая цена топлива. Остановка производства плутония-238 в США и рост цен повлияли на то, что межпланетная станция “Юнона” отправилась к Юпитеру с огромными солнечными панелями.

Ядерные технологии обязательно поднимают вопросы безопасности, и у РИТЭГов уже давно есть сформировавшиеся технологии ее обеспечения. После 1964 года, когда авария американской ракеты-носителя со спутником, питавшимся от РИТЭГа, привела к заметному повышению радиационного фона по всей планете, РИТЭГи стали упаковывать в капсулы, выдерживающие падение в атмосфере, и последующие аварии заметных следов не оставили.

Сложности превращений


Термоэлектрический генератор является не единственным вариантом преобразования тепла в электричество. В термоэмиссионных преобразователях нагревается катод вакуумной лампы. Электроны “допрыгивают” до анода, создавая электрический ток. Термофотоэлектрические преобразователи превращают тепло в свет инфракрасного диапазона, который затем преобразуется в электричество аналогично солнечной панели. Термоэлектрический конвертер на щелочных металлах использует электролит из солей натрия и серы. Двигатель Стирлинга преобразует разницу температур в движение, которое уже затем превращается в электричество генератором.

Реакторы над головой


Из всех известных человечеству управляемых источников энергии, ядерное топливо обладает наибольшей плотностью — один грамм урана способен дать столько же энергии, что 2 тонны нефти или три тонны угля. Поэтому нет ничего удивительного в том, что атомные реакторы выступают многообещающим вариантом, когда необходимо длительно снабжать космический аппарат большим количеством энергии.


Слева американский SNAP, справа советский «Бук»

Работы над космическими реакторами начали еще в 1960-х. Первым отправился в космос американский SNAP-10A, проработал на орбите 43 дня и был отключен из-за аварии, не относящейся к реактору системы. После этого эстафету принял СССР. Созданные для отслеживания перемещения американских авианосных ударных группировок спутники УС-А системы целеуказания “Легенда” несли на борту ядерный реактор “Бук” для обеспечения энергией активной радиолокационной системы, и их было запущено больше трех десятков. В конце 80-х два раза слетал в космос реактор “Топаз”, использующий меньшее количество ядерного топлива и имеющий большую эффективность — 150 КВт тепловой мощности “Топаза” производили 6 КВт электрической против 100 и 3 у “Бука”. Достигалось это в том числе и использованием другого преобразователя энергии — термоэмиссионного вместо термоэлектрического. Но после 1988 года спутники с атомными реакторами на борту больше не летали.

Возрождение интереса к ядерным реакторам произошло в 21 веке. На Западе это вызвано уменьшением запасов и ростом цены плутония-238 для РИТЭГов. В США разрабатывается реактор Kilopower, задачей которого будет стать аналогом РИТЭГа. Интересной особенностью является то, что реактор спроектирован самоуправляемым и после активации, как и РИТЭГ, не требует присмотра. В России разрабатывается проект ядерной установки мегаваттного класса. В сочетании с электрореактивными двигателями должна получиться конструкция с принципиально новыми возможностями, очень эффективный орбитальный буксир.

Безопасность реакторов построена на других принципах, нежели у РИТЭГов. До запуска реактор чист (уран ядовит, но его можно безопасно брать руками в перчатках), поэтому на случай аварии, наоборот, ставят газогенераторы, надежно разрушающие его в плотных слоях атмосферы. А вот после включения в реакторе начинают накапливаться опасные изотопы, и советские спутники УС-А в случае аварии уводили реактор на высокую орбиту захоронения. Заглушенные реакторы до сих пор летают над нашими головами, но, учитывая срок существования орбит, скорее до них доберутся космические мусорщики будущего и разберут на полезные ресурсы, нежели они сгорят в атмосфере.

Генератор из троса


Как известно, у Земли есть магнитное поле. Оно уже сейчас используется в системах ориентации космических аппаратов, но есть и другой вариант. Если размотать длинный трос, то можно либо получать электричество за счет торможения аппарата, либо разгоняться, пропуская ток через трос.


Силы, действующие на спутник, выпустивший проводящий трос

Пока что наибольшее развитие получила идея торможения аппаратов тросами для уменьшения количества космического мусора, но технически можно и обеспечить таким образом электропитание спутника, пусть и не очень длительное время.

Заключение


Сейчас отрасль систем электропитания космических аппаратов активно развивается. Солнечные панели и аккумуляторы становятся все более эффективными, а возобновление работ над космическими ядерными реакторами дает надежду на появление новых мощных источников электричества.

Материал подготовлен для портала «N+1».
Теги:
Хабы:
Если эта публикация вас вдохновила и вы хотите поддержать автора — не стесняйтесь нажать на кнопку
Всего голосов 54: ↑54 и ↓0+54
Комментарии10

Публикации

Истории

Ближайшие события

22 – 24 ноября
Хакатон «AgroCode Hack Genetics'24»
Онлайн
28 ноября
Конференция «TechRec: ITHR CAMPUS»
МоскваОнлайн
2 – 18 декабря
Yandex DataLens Festival 2024
МоскваОнлайн
11 – 13 декабря
Международная конференция по AI/ML «AI Journey»
МоскваОнлайн
25 – 26 апреля
IT-конференция Merge Tatarstan 2025
Казань