Задача. Есть калькулятор, но нет под рукой статистических таблиц. Например, нужны таблицы критических точек распределения Стьюдента для вычисления доверительного интервала. Взять компьютер с Excel? Не спортивно.
Большая точность не нужна, можно воспользоваться приближенными формулами. Идея приведённых ниже формул состоит в том, что преобразованием аргумента все распределения можно так или иначе свести к нормальному. Аппроксимации должны обеспечивать как вычисление кумулятивной функции распределения, так и расчет обратной к ней функции.
Начнём с нормального распределения.
Для него требуется вычислить функцию и обратную к ней. Я воспользовался приближением [1]:
где и — вспомогательные переменные:
а константа . Ниже дан код на языке Octave.
function y = erfa(x)
a = 0.147;
x2 = x**2; t = x2*(4/pi + a*x2)/(1 + a*x2);
y = sign(x)*sqrt(1 - exp(-t));
endfunction
function y = erfinva(x)
a = 0.147;
t1 = 1 - x**2; t2 = 2/pi/a + log(t1)/2;
y = sign(x)*sqrt(-t2 + sqrt(t2**2 - log(t1)/a));
endfunction
function y = normcdfa(x)
y = 1/2*(1 + erfa(x/sqrt(2)));
endfunction
function y = norminva(x)
y = sqrt(2)*erfinva(2*x - 1);
endfunction
Теперь, когда есть функции нормального распределения, приведём аргумент и вычислим t-распределение Стьюдента [2]:
где вспомогательная переменная есть
function y = tcdfa(x,n)
t1 = (n - 1.5)/(n - 1)**2;
y = normcdfa(sqrt(1/t1*log(1 + x**2/n)));
endfunction
function y = tinva(x,n)
t1 = (n - 1.5)/(n - 1)**2;
y = sqrt(n*exp(t1*norminva(x)**2) - n);
endfunction
Идея приближенного вычисления распределения наглядно представлена формулами [3]:
function y = chi2cdfa(x,n)
s2 = 2/9/n; mu = 1 - s2;
y = normcdfa(((x/n)**(1/3) - mu)/sqrt(s2));
endfunction
function y = chi2inva(x,n)
s2 = 2/9/n; mu = 1 - s2;
y = n*(norminva(x)*sqrt(s2) + mu)**3;
endfunction
Распределение Фишера (для и ) находится в два шага. Сначала аргумент преобразуется к вычислению распределения Фишера через распределение [4], а его мы уже знаем, как вычислить.
Найдём обратную функцию, решив квадратное уравнение.
function y = fcdfa(x,k,n)
mu = 1-2/9/k; s = sqrt(2/9/k);
lambda = (2*n + k*x/3 + k-2)/(2*n + 4*k*x/3);
normcdfa(((lambda*x)**(1/3)-mu)/s)
endfunction
function y = finva(x,k,n)
mu = 1-2/9/k; s = sqrt(2/9/k);
q = (norminva(x)*s + mu)**3;
b = 2*n + k-2 -4/3*k*q;
d = b**2 + 8/3*k*n*q;
y = (sqrt(d) - b)/(2*k/3);
endfunction
Список литературы
- Sergei Winitzki. A handy approximation for the error function and its inverse. February 6, 2008.
- Gleason J.R. A note on a proposed Student t approximation // Computational statistics & data analysis. – 2000. – Vol. 34. – №. 1. – Pp. 63-66.
- Wilson E.B., Hilferty M.M. The distribution of chi-square // Proceedings of the National Academy of Sciences. – 1931. – Vol. 17. – №. 12. – Pp. 684-688.
- Li B. and Martin E.B. An approximation to the F-distribution using the chi-square distribution. Computational statistics & data analysis. – 2002. Vol. 40. – №. 1. pp. 21-26.