В современных сетях с виртуализацией и автоматизацией широкое применение получило туннелирование трафика. Однако, туннелирование ориентировано на построение сети и обеспечение надежной передачи данных, а вопросы информационной безопасности и мониторинга обычно остаются «за скобками». Проблема невидимости туннелированного трафика для систем информационной безопасности – давно известная проблема – уже в 2011 году было опубликовано RFC 6169 «Security Concerns with IP Tunneling», указывающее на потенциальные риски применения туннелей. Непосредственно средства DPI не отстают от инфраструктуры и уже давно разбирают туннели и смотрят пользовательский трафик (когда это в целом технически возможно), однако, остается узкое место – передача данных из инфраструктуры на эти системы.

GTP, GRE, L2TP, PPPoE, VXLAN и другие аббревиатуры туннелей знакомы любому сетевому инженеру. Туннелирование трафика позволяет:
Но применение туннелей накладывает дополнительные требования и в части обеспечения информационной безопасности.
Большая часть систем информационной безопасности и системы мониторинга работают с копией трафика. При этом передача данных из инфраструктуры обеспечивается одним из трех способов:
Как мы уже писали раннее в современной инфраструктуре SPAN-порты практически не используются: они не обеспечивают ни требуемую пропускную способность, ни гарантию передачи данных. Туннели только усугубляют проблему: критерием передачи в порт мониторинга может быть только поля внешнего заголовка (заголовка туннелей) и таким образом предварительная фильтрация по полям пользовательских пакетов (вложенным заголовкам) становится невозможной.
Чаще всего применяется комбинация из пассивных оптических ответвителей и брокеров сетевых пакетов.

TAP обеспечивают сохранение надежности сети, а брокеры сетевых пакетов – обеспечение корректной передачи данных на системы DPI и оптимизацию их использования. Однако при использовании туннелирования это возможно только в одном случае – если брокер сетевых пакетов поддерживает анализ туннельных конструкций и может распределять трафик на основании вложенных заголовков пакетов туннелированного трафика.
Без возможности анализа брокером сетевых пакетов вложенных заголовков туннелированных пакетов бессмысленно говорить об оптимизации средств DPI. Фильтрация и классификация, позволяющие снизить нагрузку на системы DPI и уменьшить их количество, должны работать именно по полям пользовательского трафика (вложенных заголовков). Иначе отделить IP-адреса конкретных пользователей, требуемые протоколы или шифрованный трафик невозможно – по внешним полям это будет просто туннель. Попытка очистить трафик на системы DPI от нецелевого по внешним полям только создаст «дыру в безопасности» — целевой трафик «проскользнет мимо» информационной безопасности и мониторинга в туннеле.

В результате, при отсутствии функции анализа по вложенным заголовкам, для обеспечения безопасности или качественного мониторинга, весь трафик необходимо направлять на системы анализа. Покупать новые сервера и лицензии на дополнительную производительность, арендовать помещения для серверных и нанимать дополнительных сотрудников, которые будут этот парк обслуживать.
Еще более многогранна проблема балансировки туннелированного трафика. Во-первых, при распределении пользовательских пакетов между разными туннелями (в мобильных сетях, при резервировании с балансировкой нагрузки, да и просто при передаче прямого и обратного потока по разным туннелям) без анализа вложенных заголовков невозможно обеспечить целостность сессий пользовательского обмена.

Возьмём 2 сессии (AB-ВА и CD-DC) и передадим их через туннелированные каналы T1, T2 и T3. Допустим, речь идёт об абонентах мобильного оператора, гуляющих между базовыми станциями. Пакеты этих сессий окажутся в разных туннелях и при попадании туннелированного трафика на брокер сетевых пакетов есть 2 варианта их балансировки с сохранением целостности сессий:
Второй проблемой балансировки туннелированного трафика служит неравномерность загрузки туннелей. При мониторинге высоконагруженных каналов с небольшим количеством туннелей возникает проблема их неравномерной загрузки и потери пакетов в связи с превышением производительности выходного порта.

То есть, если сессии AB и CD по 10 Гбит/с каждая инкапсулированы в туннель T1, то получается 20 Гбит/с трафика (которые могут передаваться по интерфейсу 40GbE/100GbE или через агрегированные каналы LAG 10GbE). После копирования и попадания данного потока в брокер сетевых пакетов возникает необходимость разбалансировать этот трафик на несколько систем DPI по интерфейсам 10 GbE. Сделать это с сохранением целостности сессий используя внешние заголовки невозможно – поток превысит пропускную способность выходного интерфейса и пакеты начнут теряться.
Балансировка по вложенным заголовкам обеспечивает возможность разделить поток на более мелкие без ущерба для целостности информационного обмена и качества работы систем DPI.
Отдельной проблемой при балансировке является фрагментация трафика, вызванная туннелированием: добавление туннельных заголовков приводит к превышению MTU и фрагментации пакетов.

Когда на вход туннелирующего устройства приходит пакет с размером равным MTU, то после добавления туннельных заголовков пакет начинает MTU превышать (на количество байт туннельного заголовка) и делится на фрагменты. Причём вложенный заголовок содержится только в первом фрагменте. В результате два пакета одной сессии (AB1 и AB2), попавшие в разные туннели (T1 с заголовком XY и T2 с заголовком XZ) превращаются в четыре пакета:
В данном случае без функции отслеживания фрагментов выбор будет между нарушением целостности информационного потока из-за распределения разных туннелей между разными системами DPI и нарушением целостности информационного потока из-за распределения разных фрагментов между разными системами DPI. Отслеживание фрагментов с балансировкой по вложенным заголовкам обеспечивает сохранение целостности даже в таких случаях.
Столкнувшиеся с указанными проблемами в большой части трафика понимают их и решают. Как обычно хуже всего, когда проблема касается менее 10% трафика – она может быть незаметна и создается иллюзия, что всё в безопасности. А под безопасностью – туннель.

Туннелирование и передача трафика в системы мониторинга и информационной безопасности
GTP, GRE, L2TP, PPPoE, VXLAN и другие аббревиатуры туннелей знакомы любому сетевому инженеру. Туннелирование трафика позволяет:
- Обеспечить управление потоками данных за счёт построения сети на 3 уровне модели OSI
- Связывать удаленные офисы в единую сеть с общими ресурсами
- Упрощать администрирование сети за счёт разделения на уровень инфраструктуры и уровень пользователей
- Строить единые сети на базе различных технологий
- Обеспечивать мобильность пользователей (мобильные сети, миграция виртуальных ��ашин в дата-центрах)
Но применение туннелей накладывает дополнительные требования и в части обеспечения информационной безопасности.
Большая часть систем информационной безопасности и системы мониторинга работают с копией трафика. При этом передача данных из инфраструктуры обеспечивается одним из трех способов:
- Пакеты дублируются посредством дополнительных функций сетевого оборудования и отправляются в выделенные (SPAN) порты
- В оптическую линию устанавливаются пассивные ответвители трафика (TAP), разделяющие оптическую мощность на две линии – изначальному получателю и в систему DPI
- В инфраструктуру добавляется брокер сетевых пакетов, выполняющий функцию зеркалирвания пакетов, как и в случае с TAP – изначальному получателю и в систему DPI
Как мы уже писали раннее в современной инфраструктуре SPAN-порты практически не используются: они не обеспечивают ни требуемую пропускную способность, ни гарантию передачи данных. Туннели только усугубляют проблему: критерием передачи в порт мониторинга может быть только поля внешнего заголовка (заголовка туннелей) и таким образом предварительная фильтрация по полям пользовательских пакетов (вложенным заголовкам) становится невозможной.
Чаще всего применяется комбинация из пассивных оптических ответвителей и брокеров сетевых пакетов.

TAP обеспечивают сохранение надежности сети, а брокеры сетевых пакетов – обеспечение корректной передачи данных на системы DPI и оптимизацию их использования. Однако при использовании туннелирования это возможно только в одном случае – если брокер сетевых пакетов поддерживает анализ туннельных конструкций и может распределять трафик на основании вложенных заголовков пакетов туннелированного трафика.
Фильтрация и классификация туннелированного трафика
Без возможности анализа брокером сетевых пакетов вложенных заголовков туннелированных пакетов бессмысленно говорить об оптимизации средств DPI. Фильтрация и классификация, позволяющие снизить нагрузку на системы DPI и уменьшить их количество, должны работать именно по полям пользовательского трафика (вложенных заголовков). Иначе отделить IP-адреса конкретных пользователей, требуемые протоколы или шифрованный трафик невозможно – по внешним полям это будет просто туннель. Попытка очистить трафик на системы DPI от нецелевого по внешним полям только создаст «дыру в безопасности» — целевой трафик «проскользнет мимо» информационной безопасности и мониторинга в туннеле.

В результате, при отсутствии функции анализа по вложенным заголовкам, для обеспечения безопасности или качественного мониторинга, весь трафик необходимо направлять на системы анализа. Покупать новые сервера и лицензии на дополнительную производительность, арендовать помещения для серверных и нанимать дополнительных сотрудников, которые будут этот парк обслуживать.
Балан��ировка туннелированного трафика
Еще более многогранна проблема балансировки туннелированного трафика. Во-первых, при распределении пользовательских пакетов между разными туннелями (в мобильных сетях, при резервировании с балансировкой нагрузки, да и просто при передаче прямого и обратного потока по разным туннелям) без анализа вложенных заголовков невозможно обеспечить целостность сессий пользовательского обмена.

Возьмём 2 сессии (AB-ВА и CD-DC) и передадим их через туннелированные каналы T1, T2 и T3. Допустим, речь идёт об абонентах мобильного оператора, гуляющих между базовыми станциями. Пакеты этих сессий окажутся в разных туннелях и при попадании туннелированного трафика на брокер сетевых пакетов есть 2 варианта их балансировки с сохранением целостности сессий:
- Балансировка по внешним заголовкам. Фактически брокер сетевых пакетов при этом разделит разные туннели между системами DPI: Т1 и Т3 в DPI 1, а Т2 в DPI 2. При этом пакеты запросов (AB) информационного потока AB-BA, инкапсулированные в туннели Т1 и Т2 для обеспечения мобильности абонента, оказываются в разных системах DPI, а пакеты ответов (BA) в туннелях Т2 и Т3, соответственно, попадут в DPI 1 и DPI 2. Аналогичная ситуация произойдет и с информационным потоком CD-DC. Большинство систем DPI для корректной работы требуют все данные информационного обмена. Декапсулируя трафик, каждая из систем DPI увидит «обрывки» информационного обмена, посчитает его не требующим обработки (как несостояв��егося) или обработает некорректно. Данная балансировка может быть интересна для мониторинга состояния отдельных участков инфраструктуры (когда в систему анализа на самом деле должны прийти именно все пакеты заданного туннеля), но для этого обычно используется фильтрация.
- Балансировка по вложенным заголовкам. Брокер сетевых пакетов для балансировки игнорирует внешние заголовки и распределяет пакеты между системами DPI с сохранением целостности сессий AB-BA и CD-DC. При этом для мониторинга состояния отдельных участков инфраструктуры можно настроить фильтрацию по внешним заголовкам. Таким образом каждое средство DPI получит цельный поток информационного обмена пользователей, а средства мониторинга – все пакеты заданного туннеля.
Второй проблемой балансировки туннелированного трафика служит неравномерность загрузки туннелей. При мониторинге высоконагруженных каналов с небольшим количеством туннелей возникает проблема их неравномерной загрузки и потери пакетов в связи с превышением производительности выходного порта.

То есть, если сессии AB и CD по 10 Гбит/с каждая инкапсулированы в туннель T1, то получается 20 Гбит/с трафика (которые могут передаваться по интерфейсу 40GbE/100GbE или через агрегированные каналы LAG 10GbE). После копирования и попадания данного потока в брокер сетевых пакетов возникает необходимость разбалансировать этот трафик на несколько систем DPI по интерфейсам 10 GbE. Сделать это с сохранением целостности сессий используя внешние заголовки невозможно – поток превысит пропускную способность выходного интерфейса и пакеты начнут теряться.
Балансировка по вложенным заголовкам обеспечивает возможность разделить поток на более мелкие без ущерба для целостности информационного обмена и качества работы систем DPI.
Балансировка фрагментированного туннелированного трафика
Отдельной проблемой при балансировке является фрагментация трафика, вызванная туннелированием: добавление туннельных заголовков приводит к превышению MTU и фрагментации пакетов.

Когда на вход туннелирующего устройства приходит пакет с размером равным MTU, то после добавления туннельных заголовков пакет начинает MTU превышать (на количество байт туннельного заголовка) и делится на фрагменты. Причём вложенный заголовок содержится только в первом фрагменте. В результате два пакета одной сессии (AB1 и AB2), попавшие в разные туннели (T1 с заголовком XY и T2 с заголовком XZ) превращаются в четыре пакета:
- с внешним заголовком XY и вложенным заголовком AB
- с внешним заголовком XY без признаков туннелирования
- с внешним заголовком XZ и вложенным заголовком AB
- с внешним заголовком XZ без признаков туннелирования
В данном случае без функции отслеживания фрагментов выбор будет между нарушением целостности информационного потока из-за распределения разных туннелей между разными системами DPI и нарушением целостности информационного потока из-за распределения разных фрагментов между разными системами DPI. Отслеживание фрагментов с балансировкой по вложенным заголовкам обеспечивает сохранение целостности даже в таких случаях.
Столкнувшиеся с указанными проблемами в большой части трафика понимают их и решают. Как обычно хуже всего, когда проблема касается менее 10% трафика – она может быть незаметна и создается иллюзия, что всё в безопасности. А под безопасностью – туннель.
