Как стать автором
Обновить

Распознавание речи. Часть 1. Классификация систем распознавания речи

Время на прочтение4 мин
Количество просмотров42K
Эпиграф

В России, направление систем распознавания речи действительно развито довольно слабо. Google давно анонсировала систему записи и распознавания телефонных разговоров… Про системы похожего масштаба и качества распознавания на русском языке, к сожалению, я пока не слышал.

Но не нужно думать, что за рубежом все уже все давно открыли и нам их никогда не догнать. Когда я искал материал для этой серии, пришлось перерыть тучу зарубежной литературы и диссертаций. Причем статьи и диссертации эти были замечательных американских ученых Huang Xuedong; Hisayoshi Kojima; DongSuk Yuk и др. Понятно, на ком эта отрасль американской науки держится? ;0)

В России я знаю только одну толковую компанию, которой удалось вывести отечественные системы распознавания речи на коммерческий уровень: Центр речевых технологий. Но, возможно, после этой серии статей кому-нибудь придет в голову, что заняться разработкой таких систем можно и нужно. Тем более, что в плане алгоритмов и мат. аппарата мы практически не отстали.

image

Классификация систем распознавания речи



На сегодняшний день, под понятием “распознавание речи” скрывается целая сфера научной и инженерной деятельности. В общем, каждая задача распознавания речи сводится к тому, чтобы выделить, классифицировать и соответствующим образом отреагировать на человеческую речь из входного звукового потока. Это может быть и выполнение определенного действия на команду человека, и выделение определенного слова-маркера из большого массива телефонных переговоров, и системы для голосового ввода текста.



Признаки классификации систем распознавания речи

Каждая такая система имеет некоторые задачи, которые она призвана решать и комплекс подходов, которые применяются для решения поставленных задач. Рассмотрим основные признаки, по которым можно классифицировать системы распознавания человеческой речи и то, как этот признак может влиять на работу системы.
  • Размер словаря. Очевидно, что чем больше размер словаря, который заложен в систему распознавания, тем больше частота ошибок при распознавании слов системой. Например, словарь из 10 цифр может быть распознан практически безошибочно, тогда как частота ошибок при распознавании словаря в 100000 слов может достигать 45%. С другой стороны, даже распознавание небольшого словаря может давать большое количество ошибок распознавания, если слова в этом словаре очень похожи друг на друга.
  • Дикторозависимость или дикторонезависимость системы. По определению, дикторозависимая система предназначена для использования одним пользователем, в то время как дикторонезависимая система предназначена для работы с любым диктором. Дикторонезависимость – труднодостижимая цель, так как при обучении системы, она настраивается на параметры того диктора, на примере которого обучается. Частота ошибок распознавания таких систем обычно в 3-5 раз больше, чем частота ошибок дикторозависимых систем.
  • Раздельная или слитная речь. Если в речи каждое слово разделяется от другого участком тишины, то говорят, что эта речь – раздельная. Слитная речь – это естественно произнесенные предложения. Распознавание слитной речи намного труднее в связи с тем, что границы отдельных слов не четко определены и их произношение сильно искажено смазыванием произносимых звуков.
  • Назначение. Назначение системы определяет требуемый уровень абстракции, на котором будет происходить распознавание произнесенной речи. В командной системе (например, голосовой набор в сотовом телефоне) скорее всего, распознавание слова или фразы будет происходить как распознавание единого речевого элемента. А система диктовки текста потребует большей точности распознавания и, скорее всего, при интерпретации произнесенной фразы будет полагаться не только на то, что было произнесено в текущий момент, но и на то, как оно соотносится с тем, что было произнесено до этого. Также, в системе должен быть встроен набор грамматических правил, которым должен удовлетворять произносимый и распознаваемый текст. Чем строже эти правила, тем проще реализовать систему распознавания и тем ограниченней будет набор предложений, которые она сможет распознать.


Схема методов классификации систем распознавания речи

Различия методов распознавания речи

При создании системы распознавания речи требуется выбрать, какой уровень абстракции адекватен поставленной задаче, какие параметры звуковой волны будут использоваться для распознавания и методы распознавания этих параметров. Рассмотрим основные различия в структуре и процессе работы различных систем распознавания речи.
  • По типу структурной единицы. При анализе речи, в качестве базовой единицы могут быть выбраны отдельные слова или части произнесенных слов, такие как фонемы, ди- или трифоны, аллофоны. В зависимости от того, какая структурная часть выбрана, изменяется структура, универсальность и сложность словаря распознаваемых элементов.
  • По выделению признаков. Сама последовательность отсчетов давления звуковой волны – чрезмерно избыточна для систем распознавания звуков и содержит много лишней информации, которая при распознавании не нужна, либо даже вредна. Таким образом, для представления речевого сигнала из него требуется выделить какие-либо параметры, адекватно представляющие этот сигнал для распознавания.
  • По механизму функционирования. В современных системах широко используются различные подходы к механизму функционирования распознающих систем. Вероятностно-сетевой подход состоит в том, что речевой сигнал разбивается на определенные части (кадры, либо по фонетическому признаку), после чего происходит вероятностная оценка того, к какому именно элементу распознаваемого словаря имеет отношение данная часть и (или) весь входной сигнал. Подход, основанный на решении обратной задачи синтеза звука, состоит в том, что по входному сигналу определяется характер движения артикуляторов речевого тракта и, по специальному словарю происходит определение произнесенных фонем.


UPD: Перенес в «Искуственный интеллект». Если будет интерес, дальше публиковать буду в нем.
Теги:
Хабы:
Всего голосов 51: ↑50 и ↓1+49
Комментарии40

Публикации

Истории

Ближайшие события

7 – 8 ноября
Конференция byteoilgas_conf 2024
МоскваОнлайн
7 – 8 ноября
Конференция «Матемаркетинг»
МоскваОнлайн
15 – 16 ноября
IT-конференция Merge Skolkovo
Москва
22 – 24 ноября
Хакатон «AgroCode Hack Genetics'24»
Онлайн
28 ноября
Конференция «TechRec: ITHR CAMPUS»
МоскваОнлайн
25 – 26 апреля
IT-конференция Merge Tatarstan 2025
Казань