Как стать автором
Обновить

О квадратных уравнениях в правильном порядке

Время на прочтение4 мин
Количество просмотров44K

Как вам преподавали квадратные уравнения в школе? Это был 7-8 класс, примерно. Вероятнее всего, вам рассказали что есть формулы корней через дискриминант, что направление ветвей зависит от старшего коэффициента. Через пару занятий дали теорему Виета. Счастливчикам еще рассказали про метод переброски. И на этом решили отпустить.

Вы довольны такой базой? Вам не рассказали ни геометрический смысл, ни как это получить.

Спустя некоторое время обдумывания сей несправедливости, я решил написать эту статью и тем самым закрыть гештальт о фрагментарности знаний.

Вы не найдете здесь ничего нового по факту, но, возможно, это даст посмотреть на такое простое понятие с другой стороны.

Начнем с конца

Когда я перечислял темы, касающиеся квадратных уравнений, я делал это примерно в том же порядке, в котором изучают их в школе. Но такой порядок не оправдан с точки зрения обучения, и вот почему:

  • Дискриминант дается просто как данность (за редким исключением, когда показывают вывод этих формул через приведение к полному квадрату)

  • Мощнейшая по своей сути теорема Виета дается в конце и только как эвристический способ решения

Гораздо проще начать с теоремы Виета.

Рассмотрим квадратный трехчлен

ax^2+bx+c=0

В силу основной теоремы алгебры (примем её как данность, так как её действительно тяжело доказать), мы знаем, что у этого уравнения должно быть два корня. Допустим, что это некоторые числа x_1, x_2. Тогда можно переписать изначальное уравнение как выражение его корней:

a(x-x_1)(x-x_2)=0

Оба эти уравнения эквиваленты, так как они оба зануляются в x_1, x_2 (первое по определению x_1, x_2, второе по построению).

Раскрывая скобки, мы получим следующее:

ax^2-a(x_1+x_2)x+a x_1 x_2=0

Откуда приравняв соответствующие коэффициенты с имеющимися, получим знаменитую систему:

\begin{cases} x_1+x_2=-\frac{b}{a}\\ x_1 x_2=\frac{c}{a} \end{cases}

Мы только что доказали теорему Виета на случай квадратного трехчлена. Это потрясающий результат: мы начинаем получать некоторую информацию о корнях, которые, как мы предположили, существуют. И этот результат мы будем использовать далее.

Геометрия параболы

Вершина

Здесь можно было бы рассказать весь первый курс алгебры университета: о фокусах, директрисах, о конических сечениях, первой и второй производной…

Но раз мы ограничились школьной программой (7-8 класс, если быть точным), то и рассуждения у нас будут простые.

Самая, на мой субъективный взгляд, интересная точка параболы – это её вершина. Она уникальным образом задает положение параболе и дает понимание о том, как устроены корни.

Но формулу для нее мы не знаем, до первых понятий о производной нам еще 3 года в среднем. Будем выкручиваться.

Парабола – симметричная фигура. До того момента, как мы сдвинули ее относительно оси Ox, ось Oy служит для нее осью симметрии. Когда же мы начинаем ее сдвигать, становится видно, что она продолжает быть симметричной, но уже относительно оси, проходящей через вершину.

Парабола, вершина и ось симметрии
Парабола, вершина и ось симметрии

Тогда от вершины в обе стороны до корней равные расстояния, а это значит, что вершина параболы лежит ровно между корнями. Тогда координата x вершины это среднее между ее корнями

\frac{x_1+x_2}{2}=x_0

Пока что мы не знаем наши корни. Но благодаря теореме Виета мы знаем, чему равна сумма корней!

x_0=-\frac{b}{2a}

Потрясающий результат, который нам пригодится далее.

Ещё немного про корни

Мы знаем, что корни, графически, это те точки, в которых кривая пересекает ось Ox. Очень полезное знание, учитывая, что смотря на параболу, исключительно визуально, мы понимаем что у нас может быть 3 случая:

  1. Корней нет, при этом

    1. Либо значение в вершине больше нуля и старший коэффициент больше нуля

    2. Либо значение в вершине меньше нуля и старший коэффициент меньше нуля

  2. Корень один, но кратности 2 (не забываем основную теорему алгебры), и значение в вершине равно нулю

  3. Корня два

Второй случай тривиален, до третьего мы еще дойдем. Интересно математически взглянуть на первый. Найдем значение квадратного трехчлена в вершине:

a\left(-\frac{b}{2a}\right)^2 +b\left(-\frac{b}{2a}\right)+c=\frac{b^2}{4a}-\frac{b^2}{2a}+c=-\frac{b^2}{4a} +c

И теперь все же рассмотрим первый случай: парабола висит над осью Ox ветвями вверх.

Первый случай
Первый случай
\begin{cases}-\frac{b^2}{4a}+c>0\\a>0\end{cases}

Домножим первое неравенство на -4a. Учитывая, что a>0, знак неравенства сменится на противоположный:

b^2 - 4ac<0

Это условие, при котором корней нет.

Рассмотрим вкратце противоположный случай: парабола висит под осью Ox ветвями вниз.

Второй случай
Второй случай
\begin{cases}-\frac{b^2}{4a}+c<0\\a<0\end{cases}b^2 -4ac<0

Какая-то магия. Получается, что это условие инвариантно относительно положения параболы. Но тем оно лучше.

На данном этапе прошу заметить, что это только условие отсутствия действительных корней. Да, это похоже на дискриминант, но давайте представим, что вы этого не знаете.

Понятие дискриминанта

Мы уже многое поняли о корнях: в какой они связи с коэффициентами, когда они не существуют, каким образом они лежат относительно вершины. Все это безумно полезно, но это все до сих пор не способ найти значения алгебраически.

Давайте будем отталкиваться от того, что мы уже знаем: от вершины. Если бы мы каким-то образом знали расстояние между корнями, то могли бы однозначно найти и сами корни.

Таки что мешает нам это сделать? Но как настоящие математики, давайте находить квадрат расстояния между корнями. Не теряя общности, будем считать, что x_1 – больший корень. Тогда

(x_1 - x_2)^2=x_1^2 + x_2^2 - 2x_1 x_2

Пока что выглядит не очень, но на что-то это очень сильно похоже. Не видите? Давайте выделим полный квадрат, но по сумме, а не по разности: добавим 2 x_1 x_2, но чтобы все осталось в точности так же, это же и вычтем.

x_1^2 + x_2^2 + 2x_1 x_2- 4x_1 x_2=(x_1+x_2)^2-4 x_1 x_2

Все еще не видите? Воспользуемся снова теоремой Виета:

(x_1+x_2)^2-4 x_1 x_2=\frac{b^2}{a^2}-4\frac{c}{a}

Мы получили квадрат расстояния между корнями с учетом растяжения коэффициентом a.

Так мы теперь можем найти корни! Вершина параболы да половину расстояния между корнями в обе стороны:

x_{1,2}=-\frac{b}{2a} \pm \frac{\sqrt{\frac{b^2}{a^2}-4\frac{c}{a}}}{2}

Или, немного преобразовав

x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Квадрат расстояния между корнями квадратного трехчлена и есть дискриминант.

В общем случае, дискриминант - более сложное понятие, связанное с кратными корнями. Но для квадратного уравнения в 7 классе этого достаточно.

Теперь, если рассуждать о дискриминанте как о расстоянии, становится логично и понятно, почему если он равен нулю, то корень всего один; а если отрицательный, то действительных корней вообще нет.

Заключение

Заметьте, что единственное, что мы предположили, что корня два и они существуют. Единственное, что приняли на веру, это основную теорему алгебры. До всего остального мы дошли исключительно умозрительными заключениями и простейшей алгеброй.

Как по мне, это именно то, как должны преподавать эту тему в школе.

Теги:
Хабы:
Всего голосов 103: ↑99 и ↓4+95
Комментарии88

Публикации