Как стать автором
Обновить

Pump Station Framework для ПЛК ОВЕН 110-32м2

Время на прочтение5 мин
Количество просмотров4.9K

Привет, Хабр! Это мой первый опыт написания здесь, если что, уж сильно не пинайте). Сам я программист самоучка. Новый язык Structured Text и среду разработки Codesys разбирал по мануалу и стандарту МЭК-61131-3. В статье будет рассматриваться легкий самописный фреймворк для быстрой сборки насосной станции реализованной на ПЛК 110-32м2 фирмы ОВЕН.

Посчастливилось мне на работе из рядового слесаря по КИПиА перевестись в инженеры-программисты в состав группы комплексной автоматизации, в которой кроме меня состоял только начальник этой самой группы.

Большую часть парка промышленного оборудования на предприятии фирмы ОВЕН (это различные датчики температуры и давления, ТРМы, блоки питания, ПЛК (110) аналоговые и дискретные модули ввода-вывода (110), сенсорные панели (СП307 и СП310), и сетевые шлюзы для доступа к сервису OwenCloud, частотные преобразователи(ПЧВ). Основной контроллер который мы используем - ПЛК 110-60 (для автоматизации котельных) и ПЛК 110-32 (для автоматизации ЦТП). Разработка программ для этих ПЛК происходит в Codesys 2.3. Поскольку Программистских академий мы не кончали, а курсов по промышленному программированию на языках МЭК никто отродясь не видывал, пришлось с нуля осваивать новую стезю. О первый мой рабочий код.. я буду плакать по тебе кровавыми слезами. Надеюсь сейчас мой код выглядит получше, чем тогда..

Случилось так что на ЦТП вышла из строя, по сроку годности, одна импортная насосная станция. И светлым умам нашего предприятия пришла идея собрать свою, на ПЛК. набросали хардкодингом-быдлокодингом одну программу.. Через полгода скачком напряжения убило насосную станцию на другом объекте.. Снова ПЛК и снова захардкодили программу. Местному руководству так понравилась идея собственной разработки насосной станции, что при ближайшей реконструкции объекта заменяла старую станцию - собственной разработкой ведь экономия средств то какая. Но конфигурация станций всегда разная: тут два насоса, там пять; на этом объекте надо чтобы насосы поочередно переключались, на следующем чтобы работали в каскадном режиме. Разные запросы были. И тут-то я созрел - нужен какой-нибудь фреймворк, чтобы можно было быстро собирать эти станции различной конфигурации.

Для работы нам понадобятся:

  • Codesys 2.3

  • Таргет-файл для ПЛК 110-32м2

  • Подключить к проекту библиотеку  Util.lib

  1. Создаем новый проект. выбираем конфигурацию нашего ПЛК.

  1. Главная программа будет на языке CFC. Так наглядней и проще для тех кто не знаком с языками программирования.

По ТЗ у нас на ПЛК приходят сигналы:

Discrete inputs:

  1. Защита по сухому ходу (низкое давление на входе насоса).

  2. Защита по превышению давления на выходе насоса.

  3. Внешняя авария (авария частотного преобразователя).

  4. Статус частотного преобразователя "Работа" (RUN).

Discrete outputs:

  1. Запустить частотный преобразователь.

  2. Квитировать/сбросить аварию частотного преобразователя.

Импортируем в программу нашу виртуальную модель ПЛК, структуру для ее работы и методы.

Сложим наши свежие импорты в папочку чтоб не растерять.
Сложим наши свежие импорты в папочку чтоб не растерять.
Структуры необходимые для работы блока ПЛК110
Структуры необходимые для работы блока ПЛК110
Вид ПЛК110-32 на языке CFC
Вид ПЛК110-32 на языке CFC

Теперь к этому блоку мы можем как на электрической схеме подключить наши сигналы к дискретным входам. Допустим у нас станция будет из трех насосов. Подключаем наши сигналы виртуальными проводочками. Для работы с входами ПЛК мы их упаковываем в inputs_plc имеющей тип данных classPLC32m2StatusInputs

inputs_plc присваиваем соответствующую структуры данных.
inputs_plc присваиваем соответствующую структуры данных.

Для работы с этими данными у нас имеются методы: get_fdi и get_di

get_fdi(number_fdi: int, inputs_plc: classPLC32m2StatusInputs) -> bool;
get_di(input_number: int, inputs_plc: classPLC32m2StatusInputs) -> bool;

Подключим наши выходные сигналы к выходам. Для управления выходами добавляем вспомогательный блок get_status_outputs, он принимает на соответсвующий вход булевое состояние и упаковывает все в тип данных classPLC32m2StatusOutputs, с которым работает блок main_plc.

К входам блока outputs мы будем подключать непосредственно результат логики работы нашего контроллера.
К входам блока outputs мы будем подключать непосредственно результат логики работы нашего контроллера.

Эти блоки для работы с ПЛК110-32 универсальны и могут использоваться в любых других проектах под этот контроллер. Визуально все в одном месте и при онлайн отладке удобно наблюдать за состоянием входов-выходов ПЛК.

Для получения давления на входе и выходе насоса используются датчики 4-20мА. Сигнал в контроллер приходит через модуль аналоговых входов МВ110-8а. Импортируем модель этого модуля в проект.

В PLC_PRG добавляем наш блок аналоговых входов. analog_inputs упаковываются в соответствующий класс classInfoAnalogInputModule

Для работы необходим вспомогательный блок с настройками SetChannelsAnalogInputsModule. Этот блок содержит конфигурацию входов модуля. По умолчанию настройки всех каналов (0-100, 4-20мА).

Конфигурация регистров:

Не забываем проставить адреса регистров которые мы будем считывать (см инструкцию Приложение В, таблица В.4 - регистры протокола modbus.

Сконфигурировав канал аналогово модуля можем импортировать блок для датчика 4-20мА.

Метод get_channel_current_value(number_channel: int, analog_inputs: classInfoAnalogInputModule) позволяет получить значение с АЦП соответствующего канала.

И собрав нехитрую конструкцию, получить информацию о давлении которое приходит на датчик.

Блок с параметрами датчика нужен для соответствующего масштабирования согласно параметрам реального датчика.
Блок с параметрами датчика нужен для соответствующего масштабирования согласно параметрам реального датчика.

Насосом у нас управляет частотный преобразователь. Импортируем содержимое папки invertor_drive.

Функциональный блок частотника и его методы.
Функциональный блок частотника и его методы.

Добавляем блок в проект, подключаем данные со входов ПЛК, используя метод get_di. ain_value (float) - это аналоговый вход частотника, подключаем туда наше давление, которое мы собираемся контролировать. set_point (float) - это уставка по давлению.

start_id (bool) - сигнал на старт частотного преобразователя; auto_id (bool) - когда True, то работает ПИД-регулятор, когда False - режим manual; manual_hz - значение выходной частоты в режиме manual (Hz) ;active_id (bool) - флаг готовности к работе насоса; alarm_on (bool) - это флаг аварийного состояния, когда он активен, частотник не стартует. P, I, D - это коэффициенты регулятора, по умолчанию (2, 10, 0). min, max _range - это нижний и верхние пределы значения на выходе регулятора. aout_value - сюда мы подключим частоту на выходе регулятора и она на выходе автоматически масштабируется в значение тока 4-20мА.

Для регулятора импортируем блок распаковки настроек регулятора.

PID регулятор возьмем из библиотеки Util.lib которая идет в комплекте с Codesys (через менеджер библиотек добавляем в проект).

Частотник готов к работе и теперь им можно управлять.
Частотник готов к работе и теперь им можно управлять.

Вывод частоты преобразовывается в токовый сигнал отправляется на модуль аналогового вывода.

Реализация модуля аналогового вывода.
Реализация модуля аналогового вывода.

Для работы насосной станции предусмотрены 3 режима. Single - одиночный режим работы, когда выбираем насос и он всегда работает; Cycle - режим циклического переключения насосов. Задаем время переключения и активные насосы по очереди работают. Cascade - режим каскадного включения насосов, при недостатке давления на выходе. Чтобы насос участвовал в работе его флаг active должен быть True

Блоки режимов работы станции.
Блоки режимов работы станции.

Каждый блок может управлять до 8-ми насосов. Притом для цикла и каскада необходимо более 2х активных насосов.

Рулит этими режимами - селектор.

В селекторе предусмотрен режим обработки ошибок, например таких как: не выбран режим работы или не задан опорный насос и пр.

Обработкой всех ошибок занимается alarm_manager. Для аварий частотного преобразователя сделан свой блок. Сюда собираются все аварийные флаги и в случае нештатной ситуации генерируется код аварии и сообщение.

Менеджер возвращает нам флаг аварии, код аварии и расшифровку в виде информационного сообщения.
Менеджер возвращает нам флаг аварии, код аварии и расшифровку в виде информационного сообщения.

Не забываем вывести наши выходные сигналы на выходы ПЛК.

Конфигурируем выходы ПЛК.
Конфигурируем выходы ПЛК.

Можно запустить эмуляцию и проверить как работают режимы.

Для работы функциональных блоков в фреймворке реализованы functions project. Простенькие функции для работы с массивами, функция масштабирования диапазона и функция для задания времени.

Общие функции фреймворка.
Общие функции фреймворка.

Вот в принципе и всё. Я надеюсь что основная мысль понятна. С помощью фреймворка для контроллера буквально за 15-20 минут можно реализовать программу для нескольких групп насосов работающих независимо друг от друга. Останется дело за малым, сконфигурировать вывод параметров на HMI. Но об этом в следующий раз.

Код проекта с примером

Теги:
Хабы:
Всего голосов 7: ↑7 и ↓0+7
Комментарии20

Публикации