Как стать автором
Обновить

HiFire-4. Гиперзвук — это просто (почти)

Время на прочтение5 мин
Количество просмотров12K

Летные испытания гиперзвукового самолета - это дорого и сложно. Но есть способы в разумных пределах упростить эту задачу, примером чему служит летный эксперимент HiFire-IV, выполненный в составе международной исследовательской программы HiFire (Источник - материалы конференции AIAA).

HiFire-IV - планер, построенный по типичной для гиперзвука аэродинамической схеме "бесхвостка" с низкорасположенным треугольным крылом сверхмалого удлинения.

Устойчивость в канале рысканья достигается шайбами, установленными на законцовках консолей крыла. Эти шайбы также частично запирают отходящую от передних кромок ударную волну и предотвращают перетекание воздуха на верхнюю поверхность крыла, увеличивая этим аэродинамическое качество.

Корпус глайдера - полуцилиндр с конический заостренным носовым отсеком. Управление в каналах тангажа и крена выполняется элевонами, установленными на задней кромке крыла. Элевоны приводятся в движение линейными электрическими рулевыми машинами (развиваемый момент - до 200 Н * м).

Готовый к полету глайдер весит 92 кг, из которых на долю конструкции приходится 74.4 кг.

Птичка с прицепленным к хвосту агрегатным отсеком. 3 вида
Птичка с прицепленным к хвосту агрегатным отсеком. 3 вида

Конструкции HiFire-IV интересна следующими особенностями:

  1. Использование доступных и удобных в обработке сплавов меди (C110000) для носка и передней кромки крыла и алюминия (6061-T6) для всей остальной конструкции вместо дорогих и капризных титановых сплавов, жаропрочных сталей или углерод-углеродных композитов.

Такой выбор обусловлен малой продолжительностью пика тепловых воздействий на глайдер, а поскольку аппарат экспериментальный, и от него не требуется высокое массовое совершенство конструкции, то можно изготовить элементы планера с избыточными толщинами, чтобы тепло аэродинамического нагрева рассеивалось, и температуры не превышали предельно допустимых. Запас толщины (>=5 мм) стенок конструкции компенсирует потерю прочности материала при нагреве.

Медь использовалась на передних кромках крыла и носке из-за своей теплопроводности и большей жаропрочности. Это позволило сделать передние кромки крыла рекордно острыми - радиус скругления составляет всего 1 мм.

  1. Корпус глайдера фрезерован из алюминиевой болванки. Это значит, что не нужно штамповать и вытягивать из заготовок шпангоуты, стрингеры и панели обшивки, сваривать, склеивать и клепать друг с другом.

Количество элементов планера уменьшилось с сотен до пары десятков - корпусной детали, медных накладок на наиболее теплонагруженные участки, отклоняемых элевонов и панелей, закрывающих отсеки с бортовой аппаратурой. Сильно упрощается, удешевляется и ускоряется сборка. При таком подходе массовое совершенство ухудшается, но это не важно для летающей лаборатории.

HiFire-4 в разобранном виде. Торжество техологичности над весовым совершенством
HiFire-4 в разобранном виде. Торжество техологичности над весовым совершенством
  1. Бортовая радиоэлектроника HiFire-IV максимально следует принципу Commercial Off-The-Shelf - морально устаревшая, но надежная и отработанная инерциальная навигационная система DMARS R, связанная с БЦВК, который построен из 5 стандартных плат IBM PCi/104 DSP. Для питания бортовой электроники и электрических рулевых машин используется батарея из 4 стандартных Li-ионных аккумуляторов формата IEC R20, создающих ток силой 6А и напряжением 28В.

Полезная нагрузка глайдера HiFire-IV - тензодатчики и термопары, установленные как на обшивке, так и во внутренних объемах фюзеляжа. Информация о параметрах набегающего потока собирается с помощью трубки Пито.

К кормовому срезу глайдера присоединен агрегатный отсек с газореактивной системой ориентации на сжатом азоте (подается из установленного в фюзеляже баллона акваланга Luxford).

Внутренности птички
Внутренности птички
Глайдер HiFire-4 в сборочном цеху
Глайдер HiFire-4 в сборочном цеху

Чтобы доставить экспериментальные глайдеры в верхние слои атмосферы, используется переоснащенная метеорологическая ракета VSB-30 (сделано в Бразилии). Хвостовой и соединительные отсеки - с пластинчатыми стабилизаторами.(еще немного про VSB-30, интересное)

Носитель - двухступенчатый, все ступени работают до полного выгорания топлива. Запуск осуществляется с рельсовой направляющей, в полете экспериментальный носитель стабилизуется вращением за счет ненулевого угла установки стабилизаторов. Форма траектории определяется пусковым углом и баллистическими паузами между ступенями носителя.

Экспериментальная ракета несет сразу два глайдера, отличающиеся схемой действия на конечном участке полета. Оба глайдера после входа в атмосферу совершают маневр с большим углом атаки, чтобы перейти от баллистического спуска к планированию. Первый глайдер продолжает управляемый спуск. Второй глайдер продолжает маневр в канале тангажа, переходит к равновесному планированию и продолжает полет до полного расходования кинетической энергии.

"Двухголовая" схема позволяет уменьшить количество пусков в программе испытаний, собрать в одном запуске больше информации и хотя бы частично выполнить летный эксперимент при отказе одного из глайдеров.

Чтобы полезная нагрузка такой сложной формы (два глайдера одновременно) не влияла на устойчивость и управляемость носителя, на участке выведения ее закрывает надкалиберный носовой обтекатель, отделяемый на верхнеатмосферном участке спустя 20 секунд после выключения ДУ второй ступени.

Две птички под головным обтекателем в составе экспериментального носителя
Две птички под головным обтекателем в составе экспериментального носителя

Летный эксперимент HiFire-IV начинается спустя 530 с после старта на высоте 87.9 км, в это время глайдеры спускаются по навесной (угол к местному горизонту -70.23 градуса) траектории. Скорость достигает 2.17 км/с (число Маха ~ 7). Маневр, выполняемый на пассивном участке траектории с помощью газовых рулей, обеспечивает вход глайдеров в атмосферу с углом атаки 25 град.

Летный эксперимент с первым глайдером длится 28 секунд. За это время оба глайдера увеличивают угол снижения с -70 до -50 градусов. Затем первый глайдер падает, а второй - совершает интенсивный маневр в канале тангажа для перехода к равновесному планированию () и продолжает полет.

Время после начала летного эксперимента, с

Число Маха

0

~ 7.1

40

~ 5

60

~ 3

200

~ 2.1

400

~ 0.9

Траектория второго глайдера
Траектория второго глайдера

Летный эксперимент прошел 30 июня 2017 года в Австралии на полигоне Вумера, и хотя официально он был объявлен успешным, но найти в открытых источниках данные об обработке телеметрии и сделанных выводах пока не удается, и, судя по участию в эксперименте US AFRL и Defence Science Technology Group, пока не удастся.

Доступный в открытых источниках ролик позволяет порадоваться за группу управления пуском и полюбоваться зрелищем экспериментального носителя, срывающегося с рельсовой направляющейся куда-то вверх, но из него совершенно не ясно, что же произошло с птичками после старта.

Выводы.

  1. Технологический демонстратор - это не уменьшенная копия штатного образца

  2. Каждый летный эксперимент должен включать в себя только те аспекты штатного образца ЛА, которые в этом эксперименте нужно воспроизвести

  3. Повсюду, где это можно - использовать коммерчески доступную электронику и вспомогательные системы

  4. Материалы должны быть доступными, технологии изготовления - как можно более простыми

  5. Жизнеспособность летного демонстратора должна соответствовать целям эксперимента. Можно позволить образцу сгореть или разбиться в щепки, если он уже передал всю необходимую телеметрию

  6. Даже если цели научной работы официально озвучиваются мирными, как известный трактор, они вовсе не обязаны быть такими

Теги:
Хабы:
Всего голосов 19: ↑19 и ↓0+19
Комментарии31

Публикации

Истории

Ближайшие события