Как стать автором
Обновить

Для решения задачи наименьших квадратов с двумя переменными предлагается круговой метод оптимизации. Задано отображение из плоскости в m-мерное пространство, координатные функции которого могут удовлетворять, например, свойству покоординатной монотонности, а также свойству замедления роста: каждая координата растет тем слабее, чем больше ее величина. Задача наименьших квадратов состоит в минимизации суммы квадратов m функций, зависящих от двух переменных.

Цель - найти все оптимумы, не вычисляя производные. Пусть задано два начальных приближения a, b. Первый шаг алгоритма: найти решение линеаризованной задачи наименьших квадратов в этом направлении. В результате получится точка c. Второй шаг алгоритма: решить задачу линейного поиска относительно угла. Развернем вектор bc на такой угол, в котором значение целевой функции станет локально минимальным. Для решения этой задачи можно использовать метод парабол, если вычислить значения целевой функции при развороте вектора, скажем, на ±5° и приблизить зависимость от угла многочленом второй степени. Далее полученная точка становится вторым приближением, а второе приближение с предыдущего шага - первым.

Метод вырезает на плоскости треугольники, в которых не должно оказаться оптимума, хотя этот вопрос открыт. Таким образом, запустив алгоритм из всех углов объемлющего прямоугольника, можно получить информацию о том, где уже не следует искать оптимумы. Алгоритм удобен нормированностью углов и может быть обобщен на более высокие размерности.

Теги:
Всего голосов 4: ↑3 и ↓1+2
Комментарии0

Публикации

Ближайшие события